Initial commit with working atom and lattice type parsing

master
Alex Selimov 5 years ago
parent 552dd3cada
commit 624886bbe9

@ -1,2 +1,96 @@
# CAC_Model_Builder
This is a tool for building models in CAC
This is a tool for building models in CAC. Commands and usage options are below.
## Flow of commands
```flow
op1=>operation: Define atom types and lattices to be used
op2=>operation: Define regions and build
op3=>operation: Define modifiers
op4=>operation: Output data files
op1->op2->op3->op4
```
## Command syntax
### Atom types command
```
atom_types num_atoms {name mass}
```
The parameters for the atoms command are:
`num_atoms` - number of atom types defined for this model building session
`{}` - indicate that the contents must be repeated `num_atoms` times.
`name` - Elemental name of atom
`mass` - mass of the atom
This command should only be called once, defining all atoms in one go. The atom types will then be defined in numeric order with the first atom defined being type one and the last one being type `num_atoms`.
### Lattice command
```
lattice id lattice_type lattice_parameter [type atom_type] [basis num_basis_atoms {type posx posy posz}]
```
The parameters for the lattice command are:
`id` - User defined id for this lattice type
`lattice_type` - One of predefined lattice types which specifies the element type used. Current accepted options are: `FCC`
`type` - Optional keyword which defines the atom type used for the lattice. This is used in place of basis if atoms are at lattice positions in these elements.
`atom_type` - The atom type which corresponds to the atoms at the lattice positions of the current element
`basis` - Optional keyword which is used in order to define the basis atoms instead of using the default definition. If basis is not included the following commands also are not included.
`num_basis_atoms` are the number of basis atoms in this element.
`{}` - indicate that the contents must be repeated `num_basis_atoms` times.
`type` - the atom type of the atom.
`posx posy posz` - The position of the basis atom relative to the lattice point at (0,0,0)
**Either type or basis keywords must be present in the lattice command, both cannot be used.**
## Region Command
```
region id lattice_id element_size units lenx leny lenz [zigzag] [origin x y z] [cat region_id dim [nomatch]] [orient [hkl] [hkl] [hkl]]
```
`id` - User defined id for this region
`lattice_id` - The lattice type for this region
`element_size` - The element size used for this region defined as the number of atoms per element edge. An element size of 2 means that this region is at full atomistic resolution.
`units` - Either `lattice` or `box` which adjusts how the length values are calculated. Units `lattice` means the region will consist of `len` number of elements for every dim. Units `box` are defined in angstroms.
`lenx leny lenz` - The lengths of the box in each dimension in the user defined units
`zigzag` - Optional keyword which specifies if regions built with elements should have filled in boundaries (using atoms). If zigzag isn't present then the regions are built with filled in boundaries by default
`origin x y z` - Optional keyword which specifies the origin of the current region in angstroms. The region boundaries are then (x, x+lenx), (y, y+leny), (z,z+lenz).
`cat region_id outregionid dim [nomatch] ` - Optional keyword which stacks the current region on the face of another region defined by `dim`. `region_id` is the id of the region which is already build. `outregionid` is the user defined id of the combined stacked region which can be used with further merge commands. Default behavior is to expand the smallest region to match the larger one, using the optional keyword `nomatch` preserves the original regions and does not attempt to match the boundaries.
`orient [hkl] [hkl] [hkl]` simply orients the unit cell of this region. This defaults to [100] [010] [001]
### Write command
```
write file_name
```
Self explanatory.

@ -0,0 +1,7 @@
#This is an example input script for the CAC model builder
atom_types 1 Cu 63.546
lattice 1 fcc 3.615 type 1
#region 1 1 2 lattice 20 20 20
#write atoms.xyz

@ -0,0 +1,18 @@
CC=ifort
FC=ifort
FFLAGS=-c -mcmodel=large -debug -O0 -stand f08 -fpe0 -traceback -check bounds,uninit -warn all -implicitnone
OBJECTS= main.o elements.o lattice.o subroutines.o precision_comm_module.o
.SUFFIXES:
.SUFFIXES: .c .f .f90 .F90 .o
builder: $(OBJECTS)
$(FC) $(OBJECTS) -o $@
.f90.o:
$(FC) $(FFLAGS) $<
main.o lattice.o elements.o region.o subroutines.o : precision_comm_module.o
lattice.o : subroutines.o
main.o : elements.o lattice.o region.o

@ -0,0 +1,32 @@
module elements
use precision_comm_module
implicit none
!This is the data structure which is used to represent the CAC elements
type element
integer :: tag = 0 !Element tag (used to keep track of id's
integer :: type = 0 !Lattice type of the element
integer :: size = 0 !Element size
!Nodal position array below only works for wedge or fcc elements
real(kind=wp) :: r_node(3,8)
end type
!Finite element array
type(element), allocatable :: element_array(:)
integer :: ele_num
!Data structure used to represent atoms
type atom
integer :: tag = 0
integer :: type = 0
real(kind =wp) :: r
end type
type(atom), allocatable :: atoms(:)
integer :: atom_num
end module elements

@ -0,0 +1,95 @@
module lattice
use precision_comm_module
use subroutines
implicit none
integer :: atom_types
!Atom type variables
character(len=2), dimension(10) :: atom_names
real(kind=wp), dimension(10) :: atom_masses
!Lattice_type variables
integer :: lat_num
character(len=10), dimension(10) :: lattice_id, lattice_type
real(kind=wp), dimension(10) :: lapa
integer(kind=wp), dimension(10) :: basis_atom_num
integer(kind=wp), dimension(10,10) :: basis_type
real(kind=wp), dimension(3,10,10) ::basis_pos
!Unit Cell variables
real(kind = wp) :: fcc_cell(3,8), fcc_mat(3,3)
public
contains
subroutine lattice_init
!Initialize needed variables
lat_num=0
basis_atom_num(:) = 0
!Initialize finite element cells to be used
!First initialize the primitive fcc cell
fcc_cell = reshape((/ 0.0_wp, 0.0_wp, 0.0_wp, &
0.5_wp, 0.5_wp, 0.0_wp, &
0.5_wp, 1.0_wp, 0.5_wp, &
0.0_wp, 0.5_wp, 0.5_wp, &
0.5_wp, 0.0_wp, 0.5_wp, &
1.0_wp, 0.5_wp, 0.5_wp, &
1.0_wp, 1.0_wp, 1.0_wp, &
0.5_wp, 0.5_wp, 1.0_wp /), &
shape(fcc_cell))
fcc_mat = reshape((/ 0.5_wp, 0.5_wp, 0.0_wp, &
0.5_wp, 0.5_wp, 0.5_wp, &
0.5_wp, 0.0_wp, 0.5_wp /), &
shape(fcc_mat))
end subroutine lattice_init
!This subroutine defines the atom type arrays
subroutine atom_type_parse(line)
character(len=100), intent(in) :: line
character(len=100) :: errorloc
integer :: ia, error
character(len=20) :: label
read(line, *, iostat=error) label, atom_types, (atom_names(ia), atom_masses(ia), ia=1, atom_types)
errorloc="lattice:22"
call read_error_check(error,errorloc)
end subroutine atom_type_parse
!This subroutine defines the lattice types and the unit cells for the lattice types
subroutine lattice_parse(line)
character(len=100), intent(in) :: line
integer :: ia, error
character(len=20) :: label, kw
character(len=100) :: errorloc
lat_num = lat_num + 1
read(line, *, iostat=error) label, lattice_id(lat_num), lattice_type(lat_num), lapa(lat_num), kw
errorloc="lattice:77"
call read_error_check(error, errorloc)
select case(kw)
case("type")
read(line(scan(line, "type"):), *, iostat=error) label, basis_type(1,1)
errorloc="lattice:56"
call read_error_check(error,errorloc)
case("basis")
read(line(scan(line, "basis"):), *, iostat=error) label, basis_atom_num(lat_num), (basis_type(ia, lat_num) ,&
basis_pos(1:3,ia,lat_num), ia = 1, basis_atom_num(lat_num))
errorloc="lattice:59"
call read_error_check(error,errorloc)
case default
print *, "Keyword ", kw, " is not accepted in the lattice command"
stop "Exit with error"
end select
end subroutine lattice_parse
end module lattice

@ -0,0 +1,52 @@
program main
use precision_comm_module
use elements
use lattice
use region
integer :: iosline, iospara
logical :: flags(4)
character(len=100) :: line, command, errorloc
iosline = 0
iospara = 0
flags(:) = .false.
call lattice_init
!Main command loop
do while (iosline == 0)
read(*, '(a)', iostat=iosline) line
errorloc="read_input:line"
call read_error_check(iosline, errorloc)
!Check for comment character (#)
if ((scan(line, '#')/= 1).and.(line/='')) then
read(line, *, iostat = iospara) command
errorloc="read_input:command"
call read_error_check(iosline, errorloc)
select case(command)
case('atom_types')
call atom_type_parse(line)
flags(1) = .true.
case('lattice')
if(flags(1).eqv..false.) then
print *, "Please define atom types before defining lattice types"
stop 3
end if
call lattice_parse(line)
flags(2) =.true.
! case('region')
! call build_region(line)
! case('write')
! call write_parse(line)
case default
print *, "The command ", trim(command), " is not currently accepted",&
" please check input script and try again."
end select
end if
end do
end program main

@ -0,0 +1,13 @@
module precision_comm_module
implicit none
integer, parameter :: &
dp = selected_real_kind(15, 307), & ! double real
qp = selected_real_kind(33, 4931), & ! quadrupole real
wp = dp
integer, save :: &
mpi_wp
end module precision_comm_module

@ -0,0 +1,14 @@
module region
use precision_comm_module
implicit none
public
contains
subroutine build_region(line)
character(len=100), intent(in) :: line
end subroutine build_region
end module region

@ -0,0 +1,24 @@
module subroutines
use precision_comm_module
implicit none
public
contains
!This subroutine is just used to break the code and exit on an error
subroutine read_error_check(para, loc)
integer, intent(in) :: para
character(len=100), intent(in) :: loc
if (para > 0) then
print *, "Read error in ", trim(loc), " because of ", para
stop "Exit with error"
end if
end subroutine
end module subroutines
Loading…
Cancel
Save