Added efill zigzag code which adjusts the efill option

development
Alex Selimov 4 years ago
parent 4c75fac13c
commit 73fca4a0d8

@ -10,12 +10,12 @@ module mode_create
implicit none
character(len=100) :: name, element_type
character(len=100) :: name, element_type
real(kind = dp) :: lattice_parameter, orient(3,3), cell_mat(3,8), box_len(3), basis(3,3), origin(3), maxlen(3), &
orient_inv(3,3), box_vert(3,8), maxbd(3), lattice_space(3), duplicate(3)
integer :: esize, ix, iy, iz, box_lat_vert(3,8), lat_ele_num, lat_atom_num, bd_in_lat(6), &
basis_pos(3,10), esize_nums, esize_index(10)
logical :: dup_flag, dim_flag, efill
logical :: dup_flag, dim_flag, efill(3)
real(kind=dp), allocatable :: r_lat(:,:,:), r_atom_lat(:,:)
integer, allocatable :: elat(:)
@ -46,6 +46,7 @@ module mode_create
basisnum = 0
lat_ele_num = 0
lat_atom_num = 0
efill(:) = .false.
!First we parse the command
call parse_command(arg_pos)
@ -264,7 +265,30 @@ module mode_create
end do
case('efill')
efill = .true.
call get_command_argument(arg_pos, textholder)
select case(trim(adjustl(textholder)))
case('x')
efill(1) = .true.
case('y')
efill(2) = .true.
case('z')
efill(3) = .true.
case('xy','yx')
efill(1) = .true.
efill(2) = .true.
case('yz','zy')
efill(2) = .true.
efill(3) = .true.
case('xz','zx')
efill(1) = .true.
efill(3) = .true.
case('xyz','xzy','yxz','yzx','zxy','zyx')
efill(:) = .true.
case default
print *, "Error: ", trim(adjustl(textholder)), " is not an acceptable argument for the efill argument"
stop 3
end select
arg_pos = arg_pos + 1
case default
!If it isn't an option then you have to exit
arg_pos = arg_pos -1
@ -339,16 +363,20 @@ module mode_create
!Internal variables
integer :: i, inod, bd_in_lat(6), bd_in_array(6), ix, iy, iz, numlatpoints, ele(3,8), rzero(3), &
vlat(3), temp_lat(3,8), m, n, o, curr_esize, ei
real(kind=dp) :: v(3), temp_nodes(3,1,8)
real(kind=dp) :: v(3), temp_nodes(3,1,8), r(3), centroid_bd(6)
logical, allocatable :: lat_points(:,:,:)
logical :: node_in_bd(8)
logical :: node_in_bd(8), add
!Do some value initialization
max_esize = esize
do i = 1,3
centroid_bd(2*i) = -huge(1.0_dp)
centroid_bd(2*i-1) = huge(1.0_dp)
end do
!Now initialize the code if we are doing efill. This means calculate the number of times we can divide the esize in 2 with
!the value still being > 7
if(efill) then
if(any(efill)) then
curr_esize=esize
esize_nums=0
do while (curr_esize >= 7)
@ -485,14 +513,18 @@ module mode_create
!Check to see if the lattice point values are greater then the array limits
if(any(vlat > shape(lat_points)).or.any(vlat < 1)) then
continue
exit
!If within array boundaries check to see if it is a lattice point
else if(lat_points(vlat(1),vlat(2),vlat(3))) then
node_in_bd(inod) = .true.
else
exit
end if
end do
if(all(node_in_bd)) then
!If we are on the first round of element building then we can just add the element if all(node_in_bd) is
!true
if(all(node_in_bd).and.(ei==1)) then
lat_ele_num = lat_ele_num+1
r_lat(:,:,lat_ele_num) = temp_nodes(:,1,:)
elat(lat_ele_num) = curr_esize
@ -505,11 +537,60 @@ module mode_create
end do
end do
!Otherwise we have to also do a box boundary check
else if(all(node_in_bd)) then
r(:) = 0.0_dp
add = .false.
do inod = 1,8
r = r+ temp_nodes(:,1,inod)/8.0_dp
end do
!Here we check to make sure the centroid of the element we are adding is outside of the bounds set
!by the centroids of the elements of the initial iteration
do i = 1,3
if(efill(i)) then
if((r(i) > centroid_bd(2*i)).or.(r(i) < centroid_bd(2*i-1)))then
add = .true.
exit
end if
end if
end do
if(add) then
lat_ele_num = lat_ele_num+1
r_lat(:,:,lat_ele_num) = temp_nodes(:,1,:)
elat(lat_ele_num) = curr_esize
!Now set all the lattice points contained within an element to false
do o = minval(temp_lat(3,:)), maxval(temp_lat(3,:))
do n = minval(temp_lat(2,:)), maxval(temp_lat(2,:))
do m = minval(temp_lat(1,:)), maxval(temp_lat(1,:))
lat_points(m,n,o) = .false.
end do
end do
end do
end if
end if
end do
end do
end do
curr_esize=curr_esize-2
!If we are running efill code, after the first iteration we have to calculate the min and max element centroids in
!each dimension
if((ei == 1).and.(any(efill))) then
do i = 1, lat_ele_num
!Calculate the current element centroid
r(:) = 0.0_dp
do inod = 1,8
r = r + r_lat(:,inod,i)/8.0_dp
end do
!Check to see if it's a min or max
do o = 1,3
if(r(o) > centroid_bd(2*o)) centroid_bd(2*o) = r(o)
if(r(o) < centroid_bd(2*o-1)) centroid_bd(2*o-1) = r(o)
end do
end do
end if
end do
!Now figure out how many lattice points could not be contained in elements
allocate(r_atom_lat(3,count(lat_points)))

Loading…
Cancel
Save