|
|
|
@ -14,8 +14,8 @@ module mode_create
|
|
|
|
|
real(kind = dp) :: lattice_parameter, orient(3,3), cell_mat(3,8), box_len(3), basis(3,3), origin(3), maxlen(3), &
|
|
|
|
|
orient_inv(3,3), box_vert(3,8), maxbd(3), lattice_space(3), duplicate(3)
|
|
|
|
|
integer :: esize, ix, iy, iz, box_lat_vert(3,8), lat_ele_num, lat_atom_num, bd_in_lat(6), &
|
|
|
|
|
basis_pos(3,10)
|
|
|
|
|
logical :: dup_flag, dim_flag
|
|
|
|
|
basis_pos(3,10), esize_nums, esize_index(10)
|
|
|
|
|
logical :: dup_flag, dim_flag, efill
|
|
|
|
|
|
|
|
|
|
real(kind=dp), allocatable :: r_lat(:,:,:), r_atom_lat(:,:)
|
|
|
|
|
public
|
|
|
|
@ -26,7 +26,7 @@ module mode_create
|
|
|
|
|
|
|
|
|
|
integer, intent(out) :: arg_pos
|
|
|
|
|
|
|
|
|
|
integer :: i, ibasis, inod
|
|
|
|
|
integer :: i, ibasis, inod, ei, curr_esize
|
|
|
|
|
real(kind=dp), allocatable :: r_node_temp(:,:,:)
|
|
|
|
|
|
|
|
|
|
print *, '-----------------------Mode Create---------------------------'
|
|
|
|
@ -148,7 +148,15 @@ module mode_create
|
|
|
|
|
r_node_temp(:,ibasis,inod) = (r_lat(:,inod,i)*lattice_parameter)+basis_pos(:,ibasis)
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
call add_element(element_type, esize, 1, 1, r_node_temp)
|
|
|
|
|
|
|
|
|
|
curr_esize=esize
|
|
|
|
|
do ei = 1, esize_nums
|
|
|
|
|
if(i < esize_index(ei)) then
|
|
|
|
|
call add_element(element_type, curr_esize, 1, 1, r_node_temp)
|
|
|
|
|
exit
|
|
|
|
|
end if
|
|
|
|
|
curr_esize=curr_esize/2 + 1
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
end if
|
|
|
|
|
end if
|
|
|
|
@ -248,6 +256,9 @@ module mode_create
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
case('efill')
|
|
|
|
|
arg_pos=arg_pos+1
|
|
|
|
|
efill = .true.
|
|
|
|
|
case default
|
|
|
|
|
!If it isn't an option then you have to exit
|
|
|
|
|
arg_pos = arg_pos -1
|
|
|
|
@ -314,7 +325,7 @@ module mode_create
|
|
|
|
|
real(kind=dp), dimension(3,3), intent(in) :: transform_matrix !The transformation matrix from lattice_space to real space
|
|
|
|
|
!Internal variables
|
|
|
|
|
integer :: i, inod, bd_in_lat(6), bd_in_array(6), ix, iy, iz, numlatpoints, ele(3,8), rzero(3), &
|
|
|
|
|
vlat(3), temp_lat(3,8), m, n, o
|
|
|
|
|
vlat(3), temp_lat(3,8), m, n, o, curr_esize, ei
|
|
|
|
|
real(kind=dp) :: v(3), temp_nodes(3,1,8)
|
|
|
|
|
logical, allocatable :: lat_points(:,:,:)
|
|
|
|
|
logical :: node_in_bd(8)
|
|
|
|
@ -322,6 +333,19 @@ module mode_create
|
|
|
|
|
!Do some value initialization
|
|
|
|
|
max_esize = esize
|
|
|
|
|
|
|
|
|
|
!Now initialize the code if we are doing efill. This means calculate the number of times we can divide the esize in 2 with
|
|
|
|
|
!the value still being > 7
|
|
|
|
|
if(efill) then
|
|
|
|
|
curr_esize=esize
|
|
|
|
|
esize_nums=0
|
|
|
|
|
do while (curr_esize >= 7)
|
|
|
|
|
esize_nums=esize_nums+1
|
|
|
|
|
curr_esize = curr_esize/2 + 1
|
|
|
|
|
end do
|
|
|
|
|
else
|
|
|
|
|
esize_nums=1
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
!First find the bounding lattice points (min and max points for the box in each dimension)
|
|
|
|
|
numlatpoints = 1
|
|
|
|
|
do i = 1, 3
|
|
|
|
@ -415,60 +439,66 @@ module mode_create
|
|
|
|
|
!Now build the finite element region
|
|
|
|
|
lat_ele_num = 0
|
|
|
|
|
lat_atom_num = 0
|
|
|
|
|
allocate(r_lat(3,8,numlatpoints/esize))
|
|
|
|
|
|
|
|
|
|
!Redefined the second 3 indices as the number of elements that fit in the bounds
|
|
|
|
|
do i = 1, 3
|
|
|
|
|
bd_in_array(3+i) = bd_in_array(i)/esize
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
!Now start the element at rzero
|
|
|
|
|
do inod=1, 8
|
|
|
|
|
ele(:,inod) = ele(:,inod) + rzero
|
|
|
|
|
end do
|
|
|
|
|
do iz = -bd_in_array(6), bd_in_array(6)
|
|
|
|
|
do iy = -bd_in_array(5), bd_in_array(5)
|
|
|
|
|
do ix = -bd_in_array(4), bd_in_array(4)
|
|
|
|
|
node_in_bd(:) = .false.
|
|
|
|
|
temp_nodes(:,:,:) = 0.0_dp
|
|
|
|
|
temp_lat(:,:) = 0
|
|
|
|
|
do inod = 1, 8
|
|
|
|
|
vlat= ele(:,inod) + (/ ix*(esize), iy*(esize), iz*(esize) /)
|
|
|
|
|
!Transform point back to real space for easier checking
|
|
|
|
|
! v = matmul(orient, matmul(transform_matrix,v))
|
|
|
|
|
do i = 1,3
|
|
|
|
|
v(i) = real(vlat(i) + bd_in_lat(2*i-1) - 5)
|
|
|
|
|
end do
|
|
|
|
|
temp_nodes(:,1, inod) = matmul(orient, matmul(transform_matrix, v))
|
|
|
|
|
temp_lat(:,inod) = vlat
|
|
|
|
|
curr_esize=esize/(2**(esize_nums-1)) + 1
|
|
|
|
|
allocate(r_lat(3,8,numlatpoints/curr_esize))
|
|
|
|
|
|
|
|
|
|
!Check to see if the lattice point values are greater then the array limits
|
|
|
|
|
if(any(vlat > shape(lat_points)).or.any(vlat < 1)) then
|
|
|
|
|
continue
|
|
|
|
|
!If within array boundaries check to see if it is a lattice point
|
|
|
|
|
else if(lat_points(vlat(1),vlat(2),vlat(3))) then
|
|
|
|
|
node_in_bd(inod) = .true.
|
|
|
|
|
end if
|
|
|
|
|
end do
|
|
|
|
|
curr_esize=esize
|
|
|
|
|
do ei = 1, esize_nums
|
|
|
|
|
ele(:,:) = (curr_esize-1) * cubic_cell(:,:)
|
|
|
|
|
!Redefined the second 3 indices as the number of elements that fit in the bounds
|
|
|
|
|
do i = 1, 3
|
|
|
|
|
bd_in_array(3+i) = bd_in_array(i)/curr_esize
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
if(all(node_in_bd)) then
|
|
|
|
|
lat_ele_num = lat_ele_num+1
|
|
|
|
|
r_lat(:,:,lat_ele_num) = temp_nodes(:,1,:)
|
|
|
|
|
|
|
|
|
|
!Now set all the lattice points contained within an element to false
|
|
|
|
|
do o = minval(temp_lat(3,:)), maxval(temp_lat(3,:))
|
|
|
|
|
do n = minval(temp_lat(2,:)), maxval(temp_lat(2,:))
|
|
|
|
|
do m = minval(temp_lat(1,:)), maxval(temp_lat(1,:))
|
|
|
|
|
lat_points(m,n,o) = .false.
|
|
|
|
|
end do
|
|
|
|
|
!Now start the element at rzero
|
|
|
|
|
do inod=1, 8
|
|
|
|
|
ele(:,inod) = ele(:,inod) + rzero
|
|
|
|
|
end do
|
|
|
|
|
do iz = -bd_in_array(6), bd_in_array(6)
|
|
|
|
|
do iy = -bd_in_array(5), bd_in_array(5)
|
|
|
|
|
do ix = -bd_in_array(4), bd_in_array(4)
|
|
|
|
|
node_in_bd(:) = .false.
|
|
|
|
|
temp_nodes(:,:,:) = 0.0_dp
|
|
|
|
|
temp_lat(:,:) = 0
|
|
|
|
|
do inod = 1, 8
|
|
|
|
|
vlat= ele(:,inod) + (/ ix*(curr_esize), iy*(curr_esize), iz*(curr_esize) /)
|
|
|
|
|
!Transform point back to real space for easier checking
|
|
|
|
|
! v = matmul(orient, matmul(transform_matrix,v))
|
|
|
|
|
do i = 1,3
|
|
|
|
|
v(i) = real(vlat(i) + bd_in_lat(2*i-1) - 5)
|
|
|
|
|
end do
|
|
|
|
|
temp_nodes(:,1, inod) = matmul(orient, matmul(transform_matrix, v))
|
|
|
|
|
temp_lat(:,inod) = vlat
|
|
|
|
|
|
|
|
|
|
!Check to see if the lattice point values are greater then the array limits
|
|
|
|
|
if(any(vlat > shape(lat_points)).or.any(vlat < 1)) then
|
|
|
|
|
continue
|
|
|
|
|
!If within array boundaries check to see if it is a lattice point
|
|
|
|
|
else if(lat_points(vlat(1),vlat(2),vlat(3))) then
|
|
|
|
|
node_in_bd(inod) = .true.
|
|
|
|
|
end if
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
end if
|
|
|
|
|
if(all(node_in_bd)) then
|
|
|
|
|
lat_ele_num = lat_ele_num+1
|
|
|
|
|
r_lat(:,:,lat_ele_num) = temp_nodes(:,1,:)
|
|
|
|
|
|
|
|
|
|
!Now set all the lattice points contained within an element to false
|
|
|
|
|
do o = minval(temp_lat(3,:)), maxval(temp_lat(3,:))
|
|
|
|
|
do n = minval(temp_lat(2,:)), maxval(temp_lat(2,:))
|
|
|
|
|
do m = minval(temp_lat(1,:)), maxval(temp_lat(1,:))
|
|
|
|
|
lat_points(m,n,o) = .false.
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
end if
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
esize_index(ei) = lat_ele_num
|
|
|
|
|
curr_esize=curr_esize/2 + 1
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
!Now figure out how many lattice points could not be contained in elements
|
|
|
|
|
allocate(r_atom_lat(3,count(lat_points)))
|
|
|
|
|
lat_atom_num = 0
|
|
|
|
|