Working planar vacancy cluster algorithm

master
Alex Selimov 5 years ago
parent d0e6253d64
commit 8fc91f4dd2

@ -136,3 +136,17 @@ This options adds an arbitrarily oriented dislocation into your model based on u
`char_angle` - Character angle of the dislocation (0 is screw and 90 is edge)
`poisson` - Poisson's ratio used for the displacement field.
### Option disloop
````
-disloop loop_normal loop_size x y z
````
This option deletes vacancies on a plane which when minimized should result in a dislocation loop structure. The arguments are below:
`dim` - The box dimension which defines the normal to the loop plane. As of now this dimension must be a closed back direction, meaning that for fcc a box dimension has to be of the (111) family of planes
`n` - The number of atoms to delete on the loop plane
`x y z` - The centroid of the loop. As a note,

@ -1,6 +1,6 @@
FC=ifort
#FFLAGS=-mcmodel=large -g -O0 -stand f08 -fpe0 -traceback -check bounds,uninit -warn all -implicitnone -no-wrap-margin
FFLAGS=-mcmodel=large -Ofast -no-wrap-margin
FFLAGS=-mcmodel=large -g -O0 -stand f08 -fpe0 -traceback -check bounds,uninit -warn all -implicitnone -no-wrap-margin
#FFLAGS=-mcmodel=large -Ofast -no-wrap-margin
MODES=mode_create.o mode_merge.o mode_convert.o
OPTIONS=opt_disl.o
OBJECTS=main.o elements.o io.o subroutines.o functions.o atoms.o call_mode.o box.o call_option.o $(MODES) $(OPTIONS)
@ -19,12 +19,16 @@ clean:
$(RM) cacmb *.o
testfuncs: testfuncs.o functions.o subroutines.o
$(FC) testfuncs.o functions.o subroutines.o elements.o -o $@
$(FC) testfuncs.o functions.o subroutines.o box.o elements.o -o $@
.PHONY: cleantest
cleantest:
$(RM) testfuncs testfuncs.o
.PHONY: test
test: testfuncs
./testfuncs
$(OBJECTS) : parameters.o
atoms.o subroutines.o testfuncs.o box.o : functions.o
main.o io.o $(MODES) $(OPTIONS) : elements.o

@ -85,4 +85,21 @@ module box
return
end subroutine grow_box
subroutine in_sub_box(r, which_sub_box)
!This returns which sub_box a point is in. It returns the first sub_box with boundaries which
!contain the point.
real(kind=dp), dimension(3), intent(in) :: r
integer, intent(out) :: which_sub_box
integer :: i
do i = 1, sub_box_num
if( in_block_bd(r, sub_box_bd(:,i))) then
which_sub_box = i
exit
end if
end do
return
end subroutine in_sub_box
end module box

@ -3,6 +3,7 @@ module elements
!This module contains the elements data structures, structures needed for building regions
!and operations that are done on elements
use parameters
use functions
use subroutines
implicit none
@ -355,4 +356,26 @@ module elements
return
end subroutine rhombshape
subroutine delete_atoms(num, index)
!This subroutine deletes atoms from the atom arrays
integer, intent(in) :: num
integer, intent(inout), dimension(num) :: index
integer :: i, j
call heapsort(index)
!We go from largest index to smallest index just to make sure that we don't miss
!accidentally overwrite values which need to be deleted
do i = num, 1, -1
if(index(i) == atom_num) then
r_atom(:,index(i)) = 0.0_dp
type_atom(index(i)) = 0
else
r_atom(:,index(i)) = r_atom(:, atom_num)
type_atom(index(i)) = type_atom(atom_num)
end if
atom_num = atom_num - 1
end do
end subroutine
end module elements

@ -242,4 +242,12 @@ END FUNCTION StrDnCase
return
end function unitvec
pure function norm_dis(rl,rk)
!This just returns the magnitude of the vector between two points
real(kind=dp), dimension(3), intent(in) :: rl, rk
real(kind=dp) :: norm_dis(4)
norm_dis(1:3) = (rk - rl)
norm_dis(4) = norm2(rk-rl)
end function
end module functions

@ -203,4 +203,50 @@ module subroutines
end if
end subroutine parse_pos
subroutine heapsort(a)
integer, intent(in out) :: a(0:)
integer :: start, n, bottom
real :: temp
n = size(a)
do start = (n - 2) / 2, 0, -1
call siftdown(a, start, n);
end do
do bottom = n - 1, 1, -1
temp = a(0)
a(0) = a(bottom)
a(bottom) = temp;
call siftdown(a, 0, bottom)
end do
end subroutine heapsort
subroutine siftdown(a, start, bottom)
integer, intent(in out) :: a(0:)
integer, intent(in) :: start, bottom
integer :: child, root
real :: temp
root = start
do while(root*2 + 1 < bottom)
child = root * 2 + 1
if (child + 1 < bottom) then
if (a(child) < a(child+1)) child = child + 1
end if
if (a(root) < a(child)) then
temp = a(child)
a(child) = a (root)
a(root) = temp
root = child
else
return
end if
end do
end subroutine siftdown
end module subroutines
Loading…
Cancel
Save