Replaced sorting method which resulted in broken deletion algorithm

master
Alex Selimov 5 years ago
parent 4f79085956
commit 9ccc5f1caf

@ -5,6 +5,7 @@ module elements
use parameters use parameters
use functions use functions
use subroutines use subroutines
use sorts
use box use box
implicit none implicit none
@ -395,54 +396,69 @@ module elements
return return
end subroutine rhombshape end subroutine rhombshape
subroutine delete_atoms(num, index) subroutine delete_atoms(num, in_index)
!This subroutine deletes atoms from the atom arrays !This subroutine deletes atoms from the atom arrays
integer, intent(in) :: num integer, intent(in) :: num
integer, intent(inout), dimension(num) :: index integer, intent(in), dimension(num) :: in_index
real(kind=dp), dimension(num) :: for_sort
integer, dimension(num) :: sorted_index
integer :: i integer :: i
call heapsort(index) for_sort = in_index
call dpquicksort(for_sort)
do i = 1, num
sorted_index(i) = nint(for_sort(i))
end do
!We go from largest index to smallest index just to make sure that we don't miss !We go from largest index to smallest index just to make sure that we don't miss
!accidentally overwrite values which need to be deleted !accidentally overwrite values which need to be deleted
do i = num, 1, -1 do i = num, 1, -1
if(index(i) == atom_num) then if(sorted_index(i) == atom_num) then
r_atom(:,index(i)) = 0.0_dp r_atom(:,sorted_index(i)) = 0.0_dp
type_atom(index(i)) = 0 type_atom(sorted_index(i)) = 0
else else
r_atom(:,index(i)) = r_atom(:, atom_num) r_atom(:,sorted_index(i)) = r_atom(:, atom_num)
type_atom(index(i)) = type_atom(atom_num) type_atom(sorted_index(i)) = type_atom(atom_num)
end if end if
atom_num = atom_num - 1 atom_num = atom_num - 1
end do end do
end subroutine end subroutine
subroutine delete_elements(num, index) subroutine delete_elements(num, in_index)
!This subroutine deletes elements from the element array !This subroutine deletes elements from the element array
integer, intent(in) :: num integer, intent(in) :: num
integer, intent(inout), dimension(num) :: index integer, intent(in), dimension(num) :: in_index
integer :: i integer :: i
real(kind=dp), dimension(num) :: for_sort
integer, dimension(num) :: sorted_index
call heapsort(index)
for_sort = in_index
call dpquicksort(for_sort)
do i = 1, num
sorted_index(i) = nint(for_sort(i))
end do
!We go from largest index to smallest index just to make sure that we don't miss !We go from largest index to smallest index just to make sure that we don't miss
!accidentally overwrite values which need to be deleted !accidentally overwrite values which need to be deleted
do i = num, 1, -1 do i = num, 1, -1
if(index(i) == ele_num) then if(sorted_index(i) == ele_num) then
r_node(:,:,:,index(i)) = 0.0_dp r_node(:,:,:,sorted_index(i)) = 0.0_dp
type_ele(index(i)) ='' type_ele(sorted_index(i)) =''
size_ele(index(i)) = 0 size_ele(sorted_index(i)) = 0
lat_ele(index(i)) = 0 lat_ele(sorted_index(i)) = 0
sbox_ele(index(i)) = 0 sbox_ele(sorted_index(i)) = 0
else else
node_num = node_num - ng_node(lat_ele(index(i))) node_num = node_num - ng_node(lat_ele(sorted_index(i)))
r_node(:,:,:,index(i)) = r_node(:,:,:,ele_num) r_node(:,:,:,sorted_index(i)) = r_node(:,:,:,ele_num)
type_ele(index(i)) = type_ele(ele_num) type_ele(sorted_index(i)) = type_ele(ele_num)
size_ele(index(i)) = size_ele(ele_num) size_ele(sorted_index(i)) = size_ele(ele_num)
lat_ele(index(i)) = lat_ele(ele_num) lat_ele(sorted_index(i)) = lat_ele(ele_num)
sbox_ele(index(i)) = sbox_ele(ele_num) sbox_ele(sorted_index(i)) = sbox_ele(ele_num)
end if end if
ele_num = ele_num - 1 ele_num = ele_num - 1
end do end do
@ -632,4 +648,4 @@ module elements
end select end select
end subroutine end subroutine
end module elements end module elements

@ -0,0 +1,854 @@
! These various sort routines are provided as
! examples, rather than being fully optimised
! for the best possible performance. MJR 9/2019
!
! So far the collection is:
!
! bubble_sort (order N**2)
! selection_sort (order N**2)
! inline_selection_sort (order N**2)
! insertion_sort (order N**2)
! binary_insertion_sort (order N**2)
! pair_insertion_sort (order N**2)
! double_insertion_sort (order N**2)
! shell_sort (order N**(4/3)) (possibly)
! merge_sort (order N log N)
! alt_merge_sort (order N log N)
! heap_sort (order N log N)
! heap_sort_nr (order N log N)
! smoothsort (order N log N)
! quicksort (order N log N) (usually)
! quicksort_nr (order N log N) (usually)
! dpquicksort (order N log N) (usually)
! 14/10/19 and 18/10/19 indexing errors in heap sorts corrected
! 4/4/20 smooth sort and non-recursive quicksort added, and some
! minor code tidying
module sorts
use parameters
implicit none
integer, parameter :: prec=dp, i64=selected_int_kind(15)
! array L used by smoothsort
integer, parameter :: L(0:43) = (/ 1, 1, 3, 5, 9, 15, 25, 41, 67, 109, &
177, 287, 465, 753, 1219, 1973, 3193, 5167, 8361, &
13529, 21891, 35421, 57313, 92735, 150049, &
242785, 392835, 635621, 1028457, 1664079, 2692537, &
4356617, 7049155, 11405773, 18454929, 29860703, &
48315633, 78176337, 126491971, 204668309, 331160281, &
535828591, 866988873, 1402817465 /)
private :: binary_search, merge_arrays, heapify, heapify_nr, &
smooth_heapify, smooth_extract, sift_in, interheap_sift, L
contains
recursive subroutine quicksort(array)
real(prec), intent(inout)::array(:)
real(prec) :: temp,pivot
integer :: i,j,last,left,right
last=size(array)
if (last.lt.50) then ! use insertion sort on small arrays
do i=2,last
temp=array(i)
do j=i-1,1,-1
if (array(j).le.temp) exit
array(j+1)=array(j)
enddo
array(j+1)=temp
enddo
return
endif
! find median of three pivot
! and place sentinels at first and last elements
temp=array(last/2)
array(last/2)=array(2)
if (temp.gt.array(last)) then
array(2)=array(last)
array(last)=temp
else
array(2)=temp
endif
if (array(1).gt.array(last)) then
temp=array(1)
array(1)=array(last)
array(last)=temp
endif
if (array(1).gt.array(2)) then
temp=array(1)
array(1)=array(2)
array(2)=temp
endif
pivot=array(2)
left=3
right=last-1
do
do while(array(left).lt.pivot)
left=left+1
enddo
do while(array(right).gt.pivot)
right=right-1
enddo
if (left.ge.right) exit
temp=array(left)
array(left)=array(right)
array(right)=temp
left=left+1
right=right-1
enddo
if (left.eq.right) left=left+1
call quicksort(array(1:left-1))
call quicksort(array(left:))
end subroutine quicksort
! This version maintains its own stack, to avoid needing to call
! itself recursively. By always pushing the larger "half" to the
! stack, and moving directly to calculate the smaller "half",
! it can guarantee that the stack needs no more than log_2(N)
! entries
subroutine quicksort_nr(array)
real(prec), intent(inout)::array(:)
real(prec) :: temp,pivot
integer :: i,j,left,right,low,high
! If your compiler lacks storage_size(), replace
! storage_size(i) by 64
integer :: stack(2,storage_size(i)),stack_ptr
low=1
high=size(array)
stack_ptr=1
do
if (high-low.lt.50) then ! use insertion sort on small arrays
do i=low+1,high
temp=array(i)
do j=i-1,low,-1
if (array(j).le.temp) exit
array(j+1)=array(j)
enddo
array(j+1)=temp
enddo
! now pop from stack
if (stack_ptr.eq.1) return
stack_ptr=stack_ptr-1
low=stack(1,stack_ptr)
high=stack(2,stack_ptr)
cycle
endif
! find median of three pivot
! and place sentinels at first and last elements
temp=array((low+high)/2)
array((low+high)/2)=array(low+1)
if (temp.gt.array(high)) then
array(low+1)=array(high)
array(high)=temp
else
array(low+1)=temp
endif
if (array(low).gt.array(high)) then
temp=array(low)
array(low)=array(high)
array(high)=temp
endif
if (array(low).gt.array(low+1)) then
temp=array(low)
array(low)=array(low+1)
array(low+1)=temp
endif
pivot=array(low+1)
left=low+2
right=high-1
do
do while(array(left).lt.pivot)
left=left+1
enddo
do while(array(right).gt.pivot)
right=right-1
enddo
if (left.ge.right) exit
temp=array(left)
array(left)=array(right)
array(right)=temp
left=left+1
right=right-1
enddo
if (left.eq.right) left=left+1
! call quicksort(array(1:left-1))
! call quicksort(array(left:))
if (left.lt.(low+high)/2) then
stack(1,stack_ptr)=left
stack(2,stack_ptr)=high
stack_ptr=stack_ptr+1
high=left-1
else
stack(1,stack_ptr)=low
stack(2,stack_ptr)=left-1
stack_ptr=stack_ptr+1
low=left
endif
enddo
end subroutine quicksort_nr
! dual pivot quicksort
recursive subroutine dpquicksort(array)
real(prec), intent(inout)::array(:)
real(prec) :: temp,p1,p2
integer :: i,j,last,l,k,g
last=size(array)
if (last.lt.40) then ! use insertion sort on small arrays
do i=2,last
temp=array(i)
do j=i-1,1,-1
if (array(j).le.temp) exit
array(j+1)=array(j)
enddo
array(j+1)=temp
enddo
return
endif
p1=array(last/3)
p2=array(2*last/3)
if (p2.lt.p1) then
temp=p1
p1=p2
p2=temp
endif
array(last/3)=array(1)
array(1)=p1
array(2*last/3)=array(last)
array(last)=p2
g=last
l=2
do while (array(l).lt.p1)
l=l+1
enddo
k=l
do while(k.lt.g)
temp=array(k)
if (temp.lt.p1) then
array(k)=array(l)
array(l)=temp
l=l+1
else if (temp.gt.p2) then
do while(array(g-1).gt.p2)
g=g-1
enddo
if (k.ge.g) exit
g=g-1
if (array(g).lt.p1) then
array(k)=array(l)
array(l)=array(g)
array(g)=temp
l=l+1
else
array(k)=array(g)
array(g)=temp
endif
endif
k=k+1
enddo
if (l.gt.2) then
array(1)=array(l-1)
array(l-1)=p1
call dpquicksort(array(1:l-2))
endif
call dpquicksort(array(l:g-1))
if (g.lt.last) then
array(last)=array(g)
array(g)=p2
call dpquicksort(array(g+1:last))
endif
end subroutine dpquicksort
function binary_search(array, x, start, end)
integer binary_search
integer, intent(in) :: start,end
real(prec), intent(in) :: x,array(:)
integer :: a,b,mid
a=start
b=end
do
if (a.eq.b) then
if (array(a).gt.x) then
binary_search=a
return
else
binary_search=a+1
return
endif
endif
if (a.gt.b) then
binary_search=a
return
end if
mid=(a+b)/2
if (array(mid).lt.x) then
a=mid+1
else if (array(mid).gt.x) then
b=mid-1
else
binary_search=mid
return
endif
end do
end function binary_search
subroutine binary_insertion_sort(array)
real(prec), intent(inout) :: array(:)
integer :: i,j,pos
real(prec) :: x
do i=2,size(array)
x=array(i)
pos=binary_search(array,x,1,i-1)
do j=i,pos+1,-1
array(j)=array(j-1)
enddo
array(pos)=x
enddo
end subroutine binary_insertion_sort
subroutine insertion_sort(array)
real(prec), intent(inout) :: array(:)
integer :: i,j
real(prec) :: temp
do i=2,size(array)
temp=array(i)
do j=i-1,1,-1
if (array(j).le.temp) exit
array(j+1)=array(j)
enddo
array(j+1)=temp
enddo
end subroutine insertion_sort
subroutine double_insertion_sort(array)
real(prec), intent(inout) :: array(:)
integer :: i,j,left,right,last
real(prec) :: temp,p,next
last=size(array)
p=0.5*(array(1)+array(last))
if (array(1).gt.array(last)) then
temp=array(last)
array(last)=array(1)
array(1)=temp
endif
left=1
right=last
temp=array(2)
do i=2,last-1
if (temp.lt.p) then
do j=left,1,-1
if (array(j).le.temp) exit
array(j+1)=array(j)
enddo
array(j+1)=temp
temp=array(left+2)
left=left+1
else
next=array(right-1)
do j=right,last
if (array(j).ge.temp) exit
array(j-1)=array(j)
enddo
array(j-1)=temp
temp=next
right=right-1
endif
enddo
end subroutine double_insertion_sort
subroutine pair_insertion_sort(array)
real(prec), intent(inout) :: array(:)
integer :: i,j,last
real(prec) :: t1,t2
last=size(array)
do i=2,last-1,2
t1=min(array(i),array(i+1))
t2=max(array(i),array(i+1))
j=i-1
do while((j.ge.1).and.(array(j).gt.t2))
array(j+2)=array(j)
j=j-1
enddo
array(j+2)=t2
do while((j.ge.1).and.(array(j).gt.t1))
array(j+1)=array(j)
j=j-1
enddo
array(j+1)=t1
end do
if(mod(last,2).eq.0)then
t1=array(last)
do j=last-1,1,-1
if (array(j).le.t1) exit
array(j+1)=array(j)
end do
array(j+1)=t1
endif
end subroutine pair_insertion_sort
subroutine merge_arrays(a,b,out)
! routine used by merge_sort()
real(prec), intent(in) :: a(:),b(:)
real(prec), intent(out) :: out(:)
integer :: ai,bi,oi,i
ai=1
bi=1
oi=1
do
if (ai.gt.size(a)) then
do i=bi,size(b)
out(oi)=b(i)
oi=oi+1
enddo
return
endif
if (bi.gt.size(b)) then
do i=ai,size(a)
out(oi)=a(i)
oi=oi+1
enddo
return
endif
if (a(ai).lt.b(bi)) then
out(oi)=a(ai)
ai=ai+1
else
out(oi)=b(bi)
bi=bi+1
endif
oi=oi+1
enddo
end subroutine merge_arrays
recursive subroutine merge_sort(array)
! With a little skill, the extra copy of "array=temp"
! can be avoided
real(prec), intent(inout) :: array(:)
real(prec), allocatable :: temp(:)
integer :: last
last=size(array)
if (last.lt.40) then
call insertion_sort(array)
return
endif
call merge_sort(array(1:last/2))
call merge_sort(array(last/2+1:last))
allocate(temp(last))
call merge_arrays(array(1:last/2),array(last/2+1:last),temp)
array=temp
deallocate(temp)
end subroutine merge_sort
recursive subroutine alt_merge_sort(array)
! Alternate merges between array and temp
! to avoid copy
real(prec), intent(inout) :: array(:)
real(prec), allocatable :: temp(:)
integer :: last
last=size(array)
if (last.lt.40) then
call insertion_sort(array)
return
endif
call alt_merge_sort(array(1:last/4))
call alt_merge_sort(array(last/4+1:last/2))
call alt_merge_sort(array(last/2+1:last/2+last/4))
call alt_merge_sort(array(last/2+last/4+1:last))
allocate(temp(last))
call merge_arrays(array(1:last/4),array(last/4+1:last/2),temp(1:last/2))
call merge_arrays(array(last/2+1:last/2+last/4), &
array(last/2+last/4+1:last),temp(last/2+1:last))
call merge_arrays(temp(1:last/2),temp(last/2+1:last),array)
deallocate(temp)
end subroutine alt_merge_sort
subroutine selection_sort(array)
! This version uses Fortran's minloc intrinsic
real(prec), intent(inout) :: array(:)
real(prec) :: temp
integer :: i,j
do i=1,size(array)-1
j=minloc(array(i:),1)+i-1
temp=array(i)
array(i)=array(j)
array(j)=temp
enddo
end subroutine selection_sort
subroutine inline_selection_sort(array)
! This version does not use Fortran's minloc intrinsic
real(prec), intent(inout) :: array(:)
real(prec) :: temp
integer :: i,j,k
do i=1,size(array)-1
temp=array(i)
j=i
do k=i+1,size(array)
if (array(k).lt.temp) then
temp=array(k)
j=k
endif
enddo
array(j)=array(i)
array(i)=temp
enddo
end subroutine inline_selection_sort
subroutine shell_sort(array)
! There are many choices of intervals
! The sequence (3**k-1)/2 used below is given by Knuth
! The sort relies on the insertion sort of nearly sorted
! data being fast (i.e. not order N**2)
real(prec), intent(inout) :: array(:)
integer :: i,interval,last
interval=1
last=size(array)
do while(interval<last/3)
interval=3*interval+1
enddo
do while(interval>0)
do i=1,interval
! The following syntax passes a subarray with elements
! array(i),array(i+interval),array(i+2*interval),...
call insertion_sort(array(i::interval))
enddo
interval=(interval-1)/3
enddo
end subroutine shell_sort
subroutine bubble_sort(array)
real(prec), intent(inout) :: array(:)
real(prec) :: temp
integer :: i,j,last
last=size(array)
do i=last-1,1,-1
do j=1,i
if (array(j+1).lt.array(j)) then
temp=array(j+1)
array(j+1)=array(j)
array(j)=temp
endif
enddo
enddo
end subroutine bubble_sort
subroutine heap_sort(array)
real(prec), intent(inout) :: array(:)
real(prec) :: temp
integer :: i,last
last=size(array)
! Build heap
do i=last/2,1,-1
call heapify(array,i)
enddo
! Unpick heap
do i=last,2,-1
temp=array(1)
array(1)=array(i)
array(i)=temp
call heapify(array(1:i-1),1)
end do
end subroutine heap_sort
recursive subroutine heapify(array,root)
real(prec), intent(inout) :: array(:)
real(prec) :: temp
integer :: left,right,root,last,largest
last=size(array)
left=2*root
right=left+1
largest=root
if (left.le.last) then
if(array(left).gt.array(largest)) largest=left
endif
if (right.le.last) then
if(array(right).gt.array(largest)) largest=right
endif
if (largest.ne.root) then
temp=array(root)
array(root)=array(largest)
array(largest)=temp
call heapify(array,largest)
end if
end subroutine heapify
subroutine heap_sort_nr(array)
! The same but with a non-recursive heapify
real(prec), intent(inout) :: array(:)
real(prec) :: temp
integer :: i,last
last=size(array)
! Build heap
do i=last/2,1,-1
call heapify_nr(array,i)
enddo
! Unpick heap
do i=last,2,-1
temp=array(1)
array(1)=array(i)
array(i)=temp
call heapify_nr(array(1:i-1),1)
end do
end subroutine heap_sort_nr
subroutine heapify_nr(array,i)
! A non-recursive heapify
real(prec), intent(inout) :: array(:)
real(prec) :: root_val
integer :: i,left,right,root,last,largest
last=size(array)
root=i
left=2*root
root_val=array(root)
largest=root
do while(left.le.last)
right=left+1
if (left.le.last) then
if(array(left).gt.array(largest)) largest=left
endif
if (right.le.last) then
if(array(right).gt.array(largest)) largest=right
endif
if (largest.eq.root) exit
array(root)=array(largest)
array(largest)=root_val
root=largest
left=2*root
enddo
! array(largest)=root_val
end subroutine heapify_nr
! Smoothsort is introduced by Edsger Dijkstra
! https://doi.org/10.1016/0167-6423(82)90016-8
!
! This Fortran version owes much to https://www.keithschwarz.com/smoothsort/
! and the C version given by Martin Knoblauch Revuelta at
! http://code.google.com/archive/p/combsortcs2p-and-other-sorting-algorithms
subroutine smoothsort(array)
real(prec), intent(inout) :: array(:)
integer(i64) :: mask
integer :: offset
if (size(array).le.1) return
call smooth_heapify(array,mask,offset)
call smooth_extract(array,mask,offset)
end subroutine smoothsort
subroutine smooth_heapify(array,mask,offset)
real(prec), intent(inout) :: array(0:)
integer(i64), intent(out) :: mask
integer, intent(out) :: offset
integer :: i,last
logical :: wbf
mask=1
offset=1
last=size(array)
do i=1,last-1
if (iand(mask,2_i64).eq.2) then
mask=ior(ishft(mask,-2),1_i64)
offset=offset+2
else if (offset.eq.1) then
mask=ior(ishft(mask,1),1_i64)
offset=0
else
mask=ior(ishft(mask,offset-1),1_i64)
offset=1
endif
wbf=(((iand(mask,2_i64).eq.2).and.(i+1.lt.last)).or. &
((offset.gt.0).and.(1+i+L(offset-1).lt.last)))
if (wbf) then
call sift_in(array,i,offset)
else
call interheap_sift(array,i,mask,offset)
endif
enddo
end subroutine smooth_heapify
subroutine smooth_extract(array,mask,offset)
real(prec), intent(inout) :: array(0:)
integer :: i,j,last,ch(2)
integer(i64),value :: mask
integer, value :: offset
last=size(array)
do i=last-1,2,-1
if (offset.lt.2) then
do
mask=ishft(mask,-1)
offset=offset+1
if (iand(mask,1_i64).eq.1) exit
enddo
else
ch(2)=i-1
ch(1)=ch(2)-L(offset-2)
mask=iand(mask,not(1_i64))
do j=1,2
mask=ior(ishft(mask,1),1_i64)
offset=offset-1
call interheap_sift(array,ch(j),mask,offset)
end do
end if
end do
end subroutine smooth_extract
subroutine sift_in(array,root,sz)
real(prec), intent(inout) :: array(0:)
real(prec) :: tmp
integer :: left,right,next
integer,value :: root,sz
if (sz.lt.2) return
tmp=array(root)
do
right=root-1
left=right-L(sz-2)
if (array(right).lt.array(left)) then
next=left
sz=sz-1
else
next=right
sz=sz-2
end if
if (array(next).le.tmp) exit
array(root)=array(next)
root=next
if (sz.le.1) exit
end do
array(root)=tmp
end subroutine sift_in
subroutine interheap_sift(array,root,mask,offset)
real(prec), intent(inout) :: array(0:)
real(prec) :: tmp,mx
integer :: left,right,next
integer(i64),value :: mask
integer, value :: root,offset
tmp=array(root)
do while (mask.ne.1)
mx=tmp
if (offset.gt.1) then
right=root-1
left=right-L(offset-2)
mx=max(mx,array(left),array(right))
end if
next=root-L(offset)
if (array(next).le.mx) exit
array(root)=array(next)
root=next
do
mask=ishft(mask,-1)
offset=offset+1
if (iand(mask,1_i64).eq.1) exit
end do
end do
array(root)=tmp
call sift_in(array,root,offset)
end subroutine interheap_sift
end module sorts

@ -173,52 +173,6 @@ module subroutines
end subroutine parse_ori_vec end subroutine parse_ori_vec
subroutine heapsort(a)
integer, intent(in out) :: a(0:)
integer :: start, n, bottom
real :: temp
n = size(a)
do start = (n - 2) / 2, 0, -1
call siftdown(a, start, n);
end do
do bottom = n - 1, 1, -1
temp = a(0)
a(0) = a(bottom)
a(bottom) = temp;
call siftdown(a, 0, bottom)
end do
end subroutine heapsort
subroutine siftdown(a, start, bottom)
integer, intent(in out) :: a(0:)
integer, intent(in) :: start, bottom
integer :: child, root
real :: temp
root = start
do while(root*2 + 1 < bottom)
child = root * 2 + 1
if (child + 1 < bottom) then
if (a(child) < a(child+1)) child = child + 1
end if
if (a(root) < a(child)) then
temp = a(child)
a(child) = a (root)
a(root) = temp
root = child
else
return
end if
end do
end subroutine siftdown
subroutine apply_periodic(r) subroutine apply_periodic(r)
@ -344,4 +298,4 @@ module subroutines
return return
end subroutine check_right_ortho end subroutine check_right_ortho
end module subroutines end module subroutines

Loading…
Cancel
Save