|
|
|
@ -15,7 +15,7 @@ module mode_create
|
|
|
|
|
orient_inv(3,3), box_vert(3,8), maxbd(3), lattice_space(3), duplicate(3)
|
|
|
|
|
integer :: esize, ix, iy, iz, box_lat_vert(3,8), lat_ele_num, lat_atom_num, bd_in_lat(6), &
|
|
|
|
|
basis_pos(3,10), esize_nums, esize_index(10)
|
|
|
|
|
logical :: dup_flag, dim_flag, efill(3)
|
|
|
|
|
logical :: dup_flag, dim_flag, efill
|
|
|
|
|
|
|
|
|
|
real(kind=dp), allocatable :: r_lat(:,:,:), r_atom_lat(:,:)
|
|
|
|
|
integer, allocatable :: elat(:)
|
|
|
|
@ -46,7 +46,7 @@ module mode_create
|
|
|
|
|
basisnum = 0
|
|
|
|
|
lat_ele_num = 0
|
|
|
|
|
lat_atom_num = 0
|
|
|
|
|
efill(:) = .false.
|
|
|
|
|
efill = .false.
|
|
|
|
|
|
|
|
|
|
!First we parse the command
|
|
|
|
|
call parse_command(arg_pos)
|
|
|
|
@ -119,8 +119,8 @@ module mode_create
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
do i = 1,3
|
|
|
|
|
box_bd(2*i) = maxval(r_node_temp(i,:,:))+10.0_dp**-6.0_dp
|
|
|
|
|
box_bd(2*i-1) = minval(r_node_temp(i,:,:)) - 10.0_dp**-6.0_dp
|
|
|
|
|
box_bd(2*i) = maxval(r_node_temp(i,:,:))+10.0_dp**(-6.0_dp)
|
|
|
|
|
box_bd(2*i-1) = minval(r_node_temp(i,:,:)) - 10.0_dp**(-6.0_dp)
|
|
|
|
|
end do
|
|
|
|
|
call add_element(0,element_type, esize, 1, 1, r_node_temp)
|
|
|
|
|
end if
|
|
|
|
@ -265,30 +265,7 @@ module mode_create
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
case('efill')
|
|
|
|
|
call get_command_argument(arg_pos, textholder)
|
|
|
|
|
select case(trim(adjustl(textholder)))
|
|
|
|
|
case('x')
|
|
|
|
|
efill(1) = .true.
|
|
|
|
|
case('y')
|
|
|
|
|
efill(2) = .true.
|
|
|
|
|
case('z')
|
|
|
|
|
efill(3) = .true.
|
|
|
|
|
case('xy','yx')
|
|
|
|
|
efill(1) = .true.
|
|
|
|
|
efill(2) = .true.
|
|
|
|
|
case('yz','zy')
|
|
|
|
|
efill(2) = .true.
|
|
|
|
|
efill(3) = .true.
|
|
|
|
|
case('xz','zx')
|
|
|
|
|
efill(1) = .true.
|
|
|
|
|
efill(3) = .true.
|
|
|
|
|
case('xyz','xzy','yxz','yzx','zxy','zyx')
|
|
|
|
|
efill(:) = .true.
|
|
|
|
|
case default
|
|
|
|
|
print *, "Error: ", trim(adjustl(textholder)), " is not an acceptable argument for the efill argument"
|
|
|
|
|
stop 3
|
|
|
|
|
end select
|
|
|
|
|
arg_pos = arg_pos + 1
|
|
|
|
|
efill=.true.
|
|
|
|
|
case default
|
|
|
|
|
!If it isn't an option then you have to exit
|
|
|
|
|
arg_pos = arg_pos -1
|
|
|
|
@ -361,11 +338,12 @@ module mode_create
|
|
|
|
|
integer, dimension(3,8), intent(in) :: box_in_lat !The box vertices transformed to lattice space
|
|
|
|
|
real(kind=dp), dimension(3,3), intent(in) :: transform_matrix !The transformation matrix from lattice_space to real space
|
|
|
|
|
!Internal variables
|
|
|
|
|
integer :: i, inod, bd_in_lat(6), bd_in_array(6), ix, iy, iz, numlatpoints, ele(3,8), rzero(3), &
|
|
|
|
|
vlat(3), temp_lat(3,8), m, n, o, curr_esize, ei
|
|
|
|
|
integer :: i, inod, bd_in_lat(6), bd_in_array(6), ix, iy, iz, numlatpoints, ele(3,8), rzero(3), efill_size, &
|
|
|
|
|
vlat(3), temp_lat(3,8), m, n, o, j, k, nump_ele, efill_temp_lat(3,8), filzero(3), bd_ele_lat(6),&
|
|
|
|
|
efill_ele(3,8), ebd(6)
|
|
|
|
|
real(kind=dp) :: v(3), temp_nodes(3,1,8), r(3), centroid_bd(6)
|
|
|
|
|
logical, allocatable :: lat_points(:,:,:)
|
|
|
|
|
logical :: node_in_bd(8), add
|
|
|
|
|
logical :: node_in_bd(8), add, lat_points_ele(esize,esize,esize), intersect_bd(3)
|
|
|
|
|
|
|
|
|
|
!Do some value initialization
|
|
|
|
|
max_esize = esize
|
|
|
|
@ -374,19 +352,6 @@ module mode_create
|
|
|
|
|
centroid_bd(2*i-1) = huge(1.0_dp)
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
!Now initialize the code if we are doing efill. This means calculate the number of times we can divide the esize in 2 with
|
|
|
|
|
!the value still being > 7
|
|
|
|
|
if(any(efill)) then
|
|
|
|
|
curr_esize=esize
|
|
|
|
|
esize_nums=0
|
|
|
|
|
do while (curr_esize >= 7)
|
|
|
|
|
esize_nums=esize_nums+1
|
|
|
|
|
curr_esize = curr_esize -2
|
|
|
|
|
end do
|
|
|
|
|
else
|
|
|
|
|
esize_nums=1
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
!First find the bounding lattice points (min and max points for the box in each dimension)
|
|
|
|
|
numlatpoints = 1
|
|
|
|
|
do i = 1, 3
|
|
|
|
@ -480,117 +445,134 @@ module mode_create
|
|
|
|
|
!Now build the finite element region
|
|
|
|
|
lat_ele_num = 0
|
|
|
|
|
lat_atom_num = 0
|
|
|
|
|
curr_esize=esize - 2*(esize_nums-1)
|
|
|
|
|
allocate(r_lat(3,8,numlatpoints/curr_esize), elat(numlatpoints/curr_esize))
|
|
|
|
|
allocate(r_lat(3,8,numlatpoints/esize), elat(numlatpoints/esize))
|
|
|
|
|
|
|
|
|
|
curr_esize=esize
|
|
|
|
|
do ei = 1, esize_nums
|
|
|
|
|
ele(:,:) = (curr_esize-1) * cubic_cell(:,:)
|
|
|
|
|
!Redefined the second 3 indices as the number of elements that fit in the bounds
|
|
|
|
|
do i = 1, 3
|
|
|
|
|
bd_in_array(3+i) = bd_in_array(i)/curr_esize
|
|
|
|
|
end do
|
|
|
|
|
ele(:,:) = (esize-1) * cubic_cell(:,:)
|
|
|
|
|
!Redefined the second 3 indices as the number of elements that fit in the bounds
|
|
|
|
|
do i = 1, 3
|
|
|
|
|
bd_in_array(3+i) = bd_in_array(i)/esize
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
!Now start the element at rzero
|
|
|
|
|
do inod=1, 8
|
|
|
|
|
ele(:,inod) = ele(:,inod) + rzero
|
|
|
|
|
end do
|
|
|
|
|
do iz = -bd_in_array(6), bd_in_array(6)
|
|
|
|
|
do iy = -bd_in_array(5), bd_in_array(5)
|
|
|
|
|
do ix = -bd_in_array(4), bd_in_array(4)
|
|
|
|
|
node_in_bd(:) = .false.
|
|
|
|
|
temp_nodes(:,:,:) = 0.0_dp
|
|
|
|
|
temp_lat(:,:) = 0
|
|
|
|
|
do inod = 1, 8
|
|
|
|
|
vlat= ele(:,inod) + (/ ix*(curr_esize), iy*(curr_esize), iz*(curr_esize) /)
|
|
|
|
|
!Transform point back to real space for easier checking
|
|
|
|
|
! v = matmul(orient, matmul(transform_matrix,v))
|
|
|
|
|
do i = 1,3
|
|
|
|
|
v(i) = real(vlat(i) + bd_in_lat(2*i-1) - 5)
|
|
|
|
|
end do
|
|
|
|
|
temp_nodes(:,1, inod) = matmul(orient, matmul(transform_matrix, v))
|
|
|
|
|
temp_lat(:,inod) = vlat
|
|
|
|
|
|
|
|
|
|
!Check to see if the lattice point values are greater then the array limits
|
|
|
|
|
if(any(vlat > shape(lat_points)).or.any(vlat < 1)) then
|
|
|
|
|
exit
|
|
|
|
|
!If within array boundaries check to see if it is a lattice point
|
|
|
|
|
else if(lat_points(vlat(1),vlat(2),vlat(3))) then
|
|
|
|
|
node_in_bd(inod) = .true.
|
|
|
|
|
else
|
|
|
|
|
exit
|
|
|
|
|
end if
|
|
|
|
|
!Now start the element at rzero
|
|
|
|
|
do inod=1, 8
|
|
|
|
|
ele(:,inod) = ele(:,inod) + rzero
|
|
|
|
|
end do
|
|
|
|
|
do iz = -bd_in_array(6), bd_in_array(6)
|
|
|
|
|
do iy = -bd_in_array(5), bd_in_array(5)
|
|
|
|
|
do ix = -bd_in_array(4), bd_in_array(4)
|
|
|
|
|
node_in_bd(:) = .false.
|
|
|
|
|
temp_nodes(:,:,:) = 0.0_dp
|
|
|
|
|
temp_lat(:,:) = 0
|
|
|
|
|
do inod = 1, 8
|
|
|
|
|
vlat= ele(:,inod) + (/ ix*(esize), iy*(esize), iz*(esize) /)
|
|
|
|
|
!Transform point back to real space for easier checking
|
|
|
|
|
! v = matmul(orient, matmul(transform_matrix,v))
|
|
|
|
|
do i = 1,3
|
|
|
|
|
v(i) = real(vlat(i) + bd_in_lat(2*i-1) - 5)
|
|
|
|
|
end do
|
|
|
|
|
temp_nodes(:,1, inod) = matmul(orient, matmul(transform_matrix, v))
|
|
|
|
|
temp_lat(:,inod) = vlat
|
|
|
|
|
|
|
|
|
|
!If we are on the first round of element building then we can just add the element if all(node_in_bd) is
|
|
|
|
|
!true
|
|
|
|
|
if(all(node_in_bd).and.(ei==1)) then
|
|
|
|
|
lat_ele_num = lat_ele_num+1
|
|
|
|
|
r_lat(:,:,lat_ele_num) = temp_nodes(:,1,:)
|
|
|
|
|
elat(lat_ele_num) = curr_esize
|
|
|
|
|
!Now set all the lattice points contained within an element to false
|
|
|
|
|
do o = minval(temp_lat(3,:)), maxval(temp_lat(3,:))
|
|
|
|
|
do n = minval(temp_lat(2,:)), maxval(temp_lat(2,:))
|
|
|
|
|
do m = minval(temp_lat(1,:)), maxval(temp_lat(1,:))
|
|
|
|
|
lat_points(m,n,o) = .false.
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
!Check to see if the lattice point values are greater then the array limits
|
|
|
|
|
if(any(vlat > shape(lat_points)).or.any(vlat < 1)) then
|
|
|
|
|
continue
|
|
|
|
|
!If within array boundaries check to see if it is a lattice point
|
|
|
|
|
else if(lat_points(vlat(1),vlat(2),vlat(3))) then
|
|
|
|
|
node_in_bd(inod) = .true.
|
|
|
|
|
end if
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
!Otherwise we have to also do a box boundary check
|
|
|
|
|
else if(all(node_in_bd)) then
|
|
|
|
|
r(:) = 0.0_dp
|
|
|
|
|
add = .false.
|
|
|
|
|
do inod = 1,8
|
|
|
|
|
r = r+ temp_nodes(:,1,inod)/8.0_dp
|
|
|
|
|
!If we are on the first round of element building then we can just add the element if all(node_in_bd) is
|
|
|
|
|
!true
|
|
|
|
|
if(all(node_in_bd)) then
|
|
|
|
|
lat_ele_num = lat_ele_num+1
|
|
|
|
|
r_lat(:,:,lat_ele_num) = temp_nodes(:,1,:)
|
|
|
|
|
elat(lat_ele_num) = esize
|
|
|
|
|
!Now set all the lattice points contained within an element to false
|
|
|
|
|
do o = minval(temp_lat(3,:)), maxval(temp_lat(3,:))
|
|
|
|
|
do n = minval(temp_lat(2,:)), maxval(temp_lat(2,:))
|
|
|
|
|
do m = minval(temp_lat(1,:)), maxval(temp_lat(1,:))
|
|
|
|
|
lat_points(m,n,o) = .false.
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
!Here we check to make sure the centroid of the element we are adding is outside of the bounds set
|
|
|
|
|
!by the centroids of the elements of the initial iteration
|
|
|
|
|
!If any nodes are in the boundary and we want to efill then run the efill code
|
|
|
|
|
else if(any(node_in_bd).and.efill) then
|
|
|
|
|
|
|
|
|
|
do i = 1,3
|
|
|
|
|
if(efill(i)) then
|
|
|
|
|
if((r(i) > centroid_bd(2*i)).or.(r(i) < centroid_bd(2*i-1)))then
|
|
|
|
|
add = .true.
|
|
|
|
|
exit
|
|
|
|
|
end if
|
|
|
|
|
end if
|
|
|
|
|
end do
|
|
|
|
|
if(add) then
|
|
|
|
|
lat_ele_num = lat_ele_num+1
|
|
|
|
|
r_lat(:,:,lat_ele_num) = temp_nodes(:,1,:)
|
|
|
|
|
elat(lat_ele_num) = curr_esize
|
|
|
|
|
!Now set all the lattice points contained within an element to false
|
|
|
|
|
do o = minval(temp_lat(3,:)), maxval(temp_lat(3,:))
|
|
|
|
|
do n = minval(temp_lat(2,:)), maxval(temp_lat(2,:))
|
|
|
|
|
do m = minval(temp_lat(1,:)), maxval(temp_lat(1,:))
|
|
|
|
|
lat_points(m,n,o) = .false.
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
!Pull out the section of the lat points array
|
|
|
|
|
lat_points_ele(:,:,:)=.false.
|
|
|
|
|
do i = 1,3
|
|
|
|
|
if (minval(temp_lat(i,:)) <lim_zero) then
|
|
|
|
|
bd_ele_lat(2*i-1) = 1
|
|
|
|
|
else
|
|
|
|
|
bd_ele_lat(2*i-1) = minval(temp_lat(i,:))
|
|
|
|
|
end if
|
|
|
|
|
end if
|
|
|
|
|
end do
|
|
|
|
|
if(maxval(temp_lat(i,:))>size(lat_points,i)) then
|
|
|
|
|
bd_ele_lat(2*i) = size(temp_lat(i,:))
|
|
|
|
|
else
|
|
|
|
|
bd_ele_lat(2*i) = maxval(temp_lat(i,:))
|
|
|
|
|
end if
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
lat_points_ele(1:(bd_ele_lat(2)-bd_ele_lat(1)),1:(bd_ele_lat(4)-bd_ele_lat(3)),&
|
|
|
|
|
1:(bd_ele_lat(6)-bd_ele_lat(5)))= lat_points(bd_ele_lat(1):bd_ele_lat(2), &
|
|
|
|
|
bd_ele_lat(3):bd_ele_lat(4), &
|
|
|
|
|
bd_ele_lat(5):bd_ele_lat(6))
|
|
|
|
|
!Now start looping through elements and try to fit as many as you can
|
|
|
|
|
efill_size = esize-2
|
|
|
|
|
i=1
|
|
|
|
|
j=1
|
|
|
|
|
k=1
|
|
|
|
|
nump_ele = count(lat_points_ele)
|
|
|
|
|
do i = 1, 3
|
|
|
|
|
filzero(i) = bd_ele_lat(2*i-1) -1
|
|
|
|
|
end do
|
|
|
|
|
do while(efill_size>9)
|
|
|
|
|
!First check whether there are enough lattice points to house the current element size
|
|
|
|
|
efill_ele=cubic_cell*(efill_size-1)
|
|
|
|
|
if (nump_ele < efill_size**3) then
|
|
|
|
|
efill_size = efill_size - 2
|
|
|
|
|
else
|
|
|
|
|
ze: do k = 1, (esize-efill_size)
|
|
|
|
|
ye: do j = 1, (esize-efill_size)
|
|
|
|
|
xe: do i = 1, (esize-efill_size)
|
|
|
|
|
do inod = 1,8
|
|
|
|
|
vlat = efill_ele(:,inod) + (/ i, j, k /)
|
|
|
|
|
if (.not.lat_points_ele(vlat(1),vlat(2),vlat(3))) cycle xe
|
|
|
|
|
do o = 1,3
|
|
|
|
|
v(o) = real(vlat(o) + filzero(o) + bd_in_lat(2*o-1) -5)
|
|
|
|
|
end do
|
|
|
|
|
temp_nodes(:,1, inod) = matmul(orient, matmul(transform_matrix, v))
|
|
|
|
|
efill_temp_lat(:,inod) = vlat
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
do o = 1,3
|
|
|
|
|
ebd(2*o-1) = minval(efill_temp_lat(o,:))
|
|
|
|
|
ebd(2*o) = maxval(efill_temp_lat(o,:))
|
|
|
|
|
end do
|
|
|
|
|
lat_ele_num = lat_ele_num+1
|
|
|
|
|
r_lat(:,:,lat_ele_num) = temp_nodes(:,1,:)
|
|
|
|
|
elat(lat_ele_num) = efill_size
|
|
|
|
|
nump_ele = nump_ele - efill_size**3
|
|
|
|
|
!Now set all the lattice points contained within an element to false
|
|
|
|
|
do o = ebd(5), ebd(6)
|
|
|
|
|
do n = ebd(3), ebd(4)
|
|
|
|
|
do m = ebd(1), ebd(2)
|
|
|
|
|
lat_points(m+filzero(1),n+filzero(2),o+filzero(3)) = .false.
|
|
|
|
|
lat_points_ele(m,n,o) = .false.
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
end do xe
|
|
|
|
|
end do ye
|
|
|
|
|
end do ze
|
|
|
|
|
efill_size = efill_size-2
|
|
|
|
|
end if
|
|
|
|
|
end do
|
|
|
|
|
end if
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
curr_esize=curr_esize-2
|
|
|
|
|
!If we are running efill code, after the first iteration we have to calculate the min and max element centroids in
|
|
|
|
|
!each dimension
|
|
|
|
|
if((ei == 1).and.(any(efill))) then
|
|
|
|
|
do i = 1, lat_ele_num
|
|
|
|
|
!Calculate the current element centroid
|
|
|
|
|
r(:) = 0.0_dp
|
|
|
|
|
do inod = 1,8
|
|
|
|
|
r = r + r_lat(:,inod,i)/8.0_dp
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
!Check to see if it's a min or max
|
|
|
|
|
do o = 1,3
|
|
|
|
|
if(r(o) > centroid_bd(2*o)) centroid_bd(2*o) = r(o)
|
|
|
|
|
if(r(o) < centroid_bd(2*o-1)) centroid_bd(2*o-1) = r(o)
|
|
|
|
|
end do
|
|
|
|
|
end do
|
|
|
|
|
end if
|
|
|
|
|
end do
|
|
|
|
|
!Now figure out how many lattice points could not be contained in elements
|
|
|
|
|
allocate(r_atom_lat(3,count(lat_points)))
|
|
|
|
@ -641,6 +623,5 @@ module mode_create
|
|
|
|
|
|
|
|
|
|
STOP 3
|
|
|
|
|
end subroutine error_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end module mode_create
|
|
|
|
|