module subroutines use parameters use functions use box implicit none integer :: allostat, deallostat public contains !This subroutine is just used to break the code and exit on an error subroutine read_error_check(para, loc) integer, intent(in) :: para character(len=100), intent(in) :: loc if (para > 0) then print *, "Read error in ", trim(loc), " because of ", para stop "Exit with error" end if end subroutine subroutine matrix_inverse(a, n, a_inv) integer :: i, j, k, piv_loc integer, intent(in) :: n real(kind = dp) :: coeff, sum_l, sum_u real(kind = dp), dimension(n) :: b, x, y, b_piv real(kind = dp), dimension(n, n) :: l, u, p real(kind = dp), dimension(n, n), intent(in) :: a real(kind = dp), dimension(n, n), intent(out) :: a_inv real(kind = dp), allocatable :: v(:), u_temp(:), l_temp(:), p_temp(:) l(:, :) = identity_mat(n) u(:, :) = a(:, :) p(:, :) = identity_mat(n) !LU decomposition with partial pivoting do j = 1, n-1 allocate(v(n-j+1), stat = allostat) if(allostat /=0 ) then print *, 'Fail to allocate v in matrix_inverse' stop end if v(:) = u(j:n, j) if(maxval(abs(v)) < lim_zero) then print *, 'Fail to inverse matrix', a stop end if piv_loc = maxloc(abs(v), 1) deallocate(v, stat = deallostat) if(deallostat /=0 ) then print *, 'Fail to deallocate v in matrix_inverse' stop end if !partial pivoting if(piv_loc /= 1) then allocate( u_temp(n-j+1), p_temp(n), stat = allostat) if(allostat /=0 ) then print *, 'Fail to allocate p_temp and/or u_temp in matrix_inverse' stop end if u_temp(:) = u(j, j:n) u(j, j:n) = u(piv_loc+j-1, j:n) u(piv_loc+j-1, j:n) = u_temp(:) p_temp(:) = p(j, :) p(j, :) = p(piv_loc+j-1, :) p(piv_loc+j-1, :) = p_temp(:) deallocate( u_temp, p_temp, stat = deallostat) if(deallostat /=0 ) then print *, 'Fail to deallocate p_temp and/or u_temp in matrix_inverse' stop end if if(j > 1) then allocate( l_temp(j-1), stat = allostat) if(allostat /= 0) then print *, 'Fail to allocate l_temp in matrix_inverse' stop end if l_temp(:) = l(j, 1:j-1) l(j, 1:j-1) = l(piv_loc+j-1, 1:j-1) l(piv_loc+j-1, 1:j-1) = l_temp(:) deallocate( l_temp, stat = deallostat) if(deallostat /=0 ) then print *, 'Fail to deallocate l_temp in matrix_inverse' stop end if end if end if !LU decomposition do i = j+1, n coeff = u(i, j)/u(j, j) l(i, j) = coeff u(i, j:n) = u(i, j:n)-coeff*u(j, j:n) end do end do a_inv(:, :) = 0.0_dp do j = 1, n b(:) = 0.0_dp b(j) = 1.0_dp b_piv(:) = matmul(p, b) !Now we have LUx = b_piv !the first step is to solve y from Ly = b_piv !forward substitution do i = 1, n if(i == 1) then y(i) = b_piv(i)/l(i, i) else sum_l = 0 do k = 1, i-1 sum_l = sum_l+l(i, k)*y(k) end do y(i) = (b_piv(i)-sum_l)/l(i, i) end if end do !then we solve x from ux = y !backward subsitution do i = n, 1, -1 if(i == n) then x(i) = y(i)/u(i, i) else sum_u = 0 do k = i+1, n sum_u = sum_u+u(i, k)*x(k) end do x(i) = (y(i)-sum_u)/u(i, i) end if end do !put x into j column of a_inv a_inv(:, j) = x(:) end do return end subroutine matrix_inverse subroutine parse_ori_vec(ori_string, ori_vec) !This subroutine parses a string to vector in the format [ijk] character(len=8), intent(in) :: ori_string real(kind=dp), dimension(3), intent(out) :: ori_vec integer :: i, ori_pos, stat ori_pos=2 do i = 1,3 if (ori_string(ori_pos:ori_pos) == '-') then ori_pos = ori_pos + 1 read(ori_string(ori_pos:ori_pos), *, iostat=stat) ori_vec(i) if (stat>0) STOP "Error reading orientation value" ori_vec(i) = -ori_vec(i) ori_pos = ori_pos + 1 else read(ori_string(ori_pos:ori_pos), *, iostat=stat) ori_vec(i) if(stat>0) STOP "Error reading orientation value" ori_pos=ori_pos + 1 end if end do return end subroutine parse_ori_vec subroutine heapsort(a) integer, intent(in out) :: a(0:) integer :: start, n, bottom real :: temp n = size(a) do start = (n - 2) / 2, 0, -1 call siftdown(a, start, n); end do do bottom = n - 1, 1, -1 temp = a(0) a(0) = a(bottom) a(bottom) = temp; call siftdown(a, 0, bottom) end do end subroutine heapsort subroutine siftdown(a, start, bottom) integer, intent(in out) :: a(0:) integer, intent(in) :: start, bottom integer :: child, root real :: temp root = start do while(root*2 + 1 < bottom) child = root * 2 + 1 if (child + 1 < bottom) then if (a(child) < a(child+1)) child = child + 1 end if if (a(root) < a(child)) then temp = a(child) a(child) = a (root) a(root) = temp root = child else return end if end do end subroutine siftdown subroutine apply_periodic(r) !This function checks if an atom is outside the box and wraps it back in. This is generally used when some !kind of displacement is applied but the simulation cell is desired to be maintained as the same size. real(kind=dp), dimension(3), intent(inout) :: r integer :: j real(kind=dp) ::box_len do j = 1, 3 if(box_bc(j:j) == 'p') then box_len = box_bd(2*j) - box_bd(2*j-1) if (r(j) > box_bd(2*j)) then r(j) = r(j) - box_len else if (r(j) < box_bd(2*j-1)) then r(j) = r(j) + box_len end if end if end do end subroutine subroutine build_cell_list(numinlist, r_list, rc_off, cell_num, num_in_cell, cell_list, which_cell) !This subroutine builds a cell list based on rc_off !----------------------------------------Input/output variables------------------------------------------- integer, intent(in) :: numinlist !The number of points within r_list real(kind=dp), dimension(3,numinlist), intent(in) :: r_list !List of points to be used for the construction of !the cell list. real(kind=dp), intent(in) :: rc_off ! Cutoff radius which dictates the size of the cells integer, dimension(3), intent(inout) :: cell_num !Number of cells in each dimension. integer, allocatable, intent(inout) :: num_in_cell(:,:,:) !Number of points within each cell integer, allocatable, intent(inout) :: cell_list(:,:,:,:) !Index of points from r_list within each cell. integer, dimension(3,numinlist), intent(out) :: which_cell !The cell index for each point in r_list !----------------------------------------Begin Subroutine ------------------------------------------- integer :: i, j, cell_lim, c(3) real(kind=dp) :: box_len(3) integer, allocatable :: resize_cell_list(:,:,:,:) !First calculate the number of cells that we need in each dimension do i = 1,3 box_len(i) = box_bd(2*i) - box_bd(2*i-1) cell_num(i) = int(box_len(i)/(rc_off/2))+1 end do !Initialize/allocate variables cell_lim = 10 allocate(num_in_cell(cell_num(1),cell_num(2),cell_num(3)), cell_list(cell_lim, cell_num(1), cell_num(2), cell_num(3))) !Now place points within cell do i = 1, numinlist !c is the position of the cell that the point belongs to do j = 1, 3 c(j) = int((r_list(j,i)-box_bd(2*j-1))/(rc_off/2)) + 1 end do !Place the index in the correct position, growing if necessary num_in_cell(c(1),c(2),c(3)) = num_in_cell(c(1),c(2),c(3)) + 1 if (num_in_cell(c(1),c(2),c(3)) > cell_lim) then allocate(resize_cell_list(cell_lim+10,cell_num(1),cell_num(2),cell_num(3))) resize_cell_list(1:cell_lim, :, :, :) = cell_list resize_cell_list(cell_lim+1:, :, :, :) = 0 call move_alloc(resize_cell_list, cell_list) end if cell_list(num_in_cell(c(1),c(2),c(3)),c(1),c(2),c(3)) = i which_cell(:,i) = c end do return end subroutine build_cell_list subroutine check_right_ortho(ori, isortho, isrighthanded) !This subroutine checks whether provided orientations in the form: ! | x1 x2 x3 | ! | y1 y2 y3 | ! | z1 z2 z3 | !are right handed real(kind=dp), dimension(3,3), intent(in) :: ori logical, intent(out) :: isortho, isrighthanded integer :: i, j real(kind=dp) :: v(3), v_k(3) !Initialize variables isortho = .true. isrighthanded=.true. do i = 1, 3 do j = i+1, 3 if(abs(dot_product(ori(i,:), ori(j,:))) > lim_zero) then isortho = .false. end if !Check if they are righthanded if (j == i+1) then v(:) = cross_product(ori(i,:), ori(j,:)) v_k(:) = v(:) - ori(mod(j, 3)+1,:) else if ((i==1).and.(j==3)) then v(:) = cross_product(ori(j,:),ori(i,:)) v_k(:) = v(:) - ori(i+1, :) end if if(norm2(v_k) > 10.0_dp**(-8.0_dp)) then isrighthanded=.false. end if end do end do return end subroutine check_right_ortho end module subroutines