Vec3/tests/cuda_unit_tests/vec3_test.cu
2025-04-16 22:16:58 -04:00

178 lines
5.2 KiB
Plaintext

#include "vec3.h"
#include <cuda_runtime.h>
#include <gtest/gtest.h>
// Define kernel function to test Vec3 operations
template <typename T>
__global__ void testVec3Operations(Vec3<T> *results, Vec3<T> a, Vec3<T> b,
T scalar) {
int idx = threadIdx.x;
// Test different operations based on thread index
switch (idx) {
case 0: // Addition
results[idx] = a + b;
break;
case 1: // Subtraction
results[idx] = a - b;
break;
case 2: // Scale
results[idx] = a.scale(scalar);
break;
case 3: // Dot product - store in x component
results[idx].x = a.dot(b);
results[idx].y = 0;
results[idx].z = 0;
break;
case 4: // Cross product
results[idx] = a.cross(b);
break;
case 5: // Squared norm - store in x component
results[idx].x = a.squared_norm2();
results[idx].y = 0;
results[idx].z = 0;
break;
case 6: // Norm - store in x component
results[idx].x = a.norm2();
results[idx].y = 0;
results[idx].z = 0;
break;
case 7: // Normalized
results[idx] = a.normalized();
break;
}
}
// Test fixture for Vec3 CUDA tests
class Vec3CudaTest : public ::testing::Test {
protected:
void SetUp() override {
// Allocate device memory for results
cudaMalloc(&d_results, NUM_TESTS * sizeof(Vec3<float>));
}
void TearDown() override {
// Free device memory
cudaFree(d_results);
}
// Number of operations to test
static const int NUM_TESTS = 8;
// Pointer to device memory for results
Vec3<float> *d_results;
// Host memory for results
Vec3<float> h_results[NUM_TESTS];
// Test with a reasonable epsilon for floating point comparisons
float epsilon = 1e-5f;
};
TEST_F(Vec3CudaTest, BasicOperations) {
// Define test vectors
Vec3<float> a{1.0f, 2.0f, 3.0f};
Vec3<float> b{4.0f, 5.0f, 6.0f};
float scalar = 2.0f;
// Launch kernel with 8 threads to test different operations
testVec3Operations<<<1, NUM_TESTS>>>(d_results, a, b, scalar);
// Check for kernel execution errors
cudaError_t cudaStatus = cudaGetLastError();
ASSERT_EQ(cudaStatus, cudaSuccess)
<< "Kernel launch failed: " << cudaGetErrorString(cudaStatus);
// Copy results back to host
cudaStatus = cudaMemcpy(h_results, d_results, NUM_TESTS * sizeof(Vec3<float>),
cudaMemcpyDeviceToHost);
ASSERT_EQ(cudaStatus, cudaSuccess)
<< "cudaMemcpy failed: " << cudaGetErrorString(cudaStatus);
// Wait for GPU to finish
cudaStatus = cudaDeviceSynchronize();
ASSERT_EQ(cudaStatus, cudaSuccess)
<< "cudaDeviceSynchronize failed: " << cudaGetErrorString(cudaStatus);
// Test addition
EXPECT_NEAR(h_results[0].x, 5.0f, epsilon);
EXPECT_NEAR(h_results[0].y, 7.0f, epsilon);
EXPECT_NEAR(h_results[0].z, 9.0f, epsilon);
// Test subtraction
EXPECT_NEAR(h_results[1].x, -3.0f, epsilon);
EXPECT_NEAR(h_results[1].y, -3.0f, epsilon);
EXPECT_NEAR(h_results[1].z, -3.0f, epsilon);
// Test scale
EXPECT_NEAR(h_results[2].x, 2.0f, epsilon);
EXPECT_NEAR(h_results[2].y, 4.0f, epsilon);
EXPECT_NEAR(h_results[2].z, 6.0f, epsilon);
// Test dot product
EXPECT_NEAR(h_results[3].x, 32.0f, epsilon);
// Test cross product
EXPECT_NEAR(h_results[4].x, -3.0f, epsilon);
EXPECT_NEAR(h_results[4].y, 6.0f, epsilon);
EXPECT_NEAR(h_results[4].z, -3.0f, epsilon);
// Test squared norm
EXPECT_NEAR(h_results[5].x, 14.0f, epsilon);
// Test norm
EXPECT_NEAR(h_results[6].x, std::sqrt(14.0f), epsilon);
// Test normalized
float norm = std::sqrt(14.0f);
EXPECT_NEAR(h_results[7].x, 1.0f / norm, epsilon);
EXPECT_NEAR(h_results[7].y, 2.0f / norm, epsilon);
EXPECT_NEAR(h_results[7].z, 3.0f / norm, epsilon);
}
TEST_F(Vec3CudaTest, EdgeCases) {
// Test with zero vector
Vec3<float> zero{0.0f, 0.0f, 0.0f};
Vec3<float> nonZero{1.0f, 2.0f, 3.0f};
float scalar = 5.0f;
// Launch kernel with 8 threads to test different operations
testVec3Operations<<<1, NUM_TESTS>>>(d_results, zero, nonZero, scalar);
// Check for kernel execution errors
cudaError_t cudaStatus = cudaGetLastError();
ASSERT_EQ(cudaStatus, cudaSuccess)
<< "Kernel launch failed: " << cudaGetErrorString(cudaStatus);
// Copy results back to host
cudaStatus = cudaMemcpy(h_results, d_results, NUM_TESTS * sizeof(Vec3<float>),
cudaMemcpyDeviceToHost);
ASSERT_EQ(cudaStatus, cudaSuccess)
<< "cudaMemcpy failed: " << cudaGetErrorString(cudaStatus);
// Wait for GPU to finish
cudaStatus = cudaDeviceSynchronize();
ASSERT_EQ(cudaStatus, cudaSuccess)
<< "cudaDeviceSynchronize failed: " << cudaGetErrorString(cudaStatus);
// Test normalized with zero vector (should handle epsilon)
// Normalized of zero vector should be very small but not NaN
EXPECT_FALSE(isnan(h_results[7].x));
EXPECT_FALSE(isnan(h_results[7].y));
EXPECT_FALSE(isnan(h_results[7].z));
// Test dot product with zero vector (should be zero)
EXPECT_NEAR(h_results[3].x, 0.0f, epsilon);
// Test cross product with zero vector (should be zero)
EXPECT_NEAR(h_results[4].x, 0.0f, epsilon);
EXPECT_NEAR(h_results[4].y, 0.0f, epsilon);
EXPECT_NEAR(h_results[4].z, 0.0f, epsilon);
}
// Main function to run all tests
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}