Fix bug with CUDA impl and add CUDA tests

This commit is contained in:
Alex Selimov 2025-04-17 16:21:59 -04:00
parent 5155ec21aa
commit 4269333aa2
4 changed files with 328 additions and 2 deletions

View File

@ -84,7 +84,7 @@ struct LennardJones : PairPotential {
}
};
~LennardJones() {};
CUDA_CALLABLE ~LennardJones(){};
};
PairPotential::~PairPotential() {};

View File

@ -10,4 +10,5 @@ if(NOT EXISTS ${GOOGLETEST_DIR})
endif()
add_subdirectory(lib/googletest)
add_subdirectory(unit_tests)
add_subdirectory(unit_tests)
add_subdirectory(cuda_unit_tests)

View File

@ -0,0 +1,9 @@
include_directories(${gtest_SOURCE_DIR}/include ${gtest_SOURCE_DIR})
add_executable(${NAME}_cuda_tests
test_potential.cu
)
target_link_libraries(${NAME}_cuda_tests gtest gtest_main)
target_link_libraries(${NAME}_cuda_tests ${CMAKE_PROJECT_NAME}_cuda_lib)
add_test(NAME ${NAME}CudaTests COMMAND ${CMAKE_BINARY_DIR}/tests/unit_tests/${NAME}_tests)

View File

@ -0,0 +1,316 @@
#include "pair_potentials.cuh"
#include "precision.hpp"
#include "gtest/gtest.h"
#include <cmath>
#include <cuda_runtime.h>
// Structure to hold test results from device
struct TestResults {
bool zero_distance_pass;
bool beyond_cutoff_pass;
bool at_minimum_pass;
bool at_equilibrium_pass;
bool repulsive_region_pass;
bool attractive_region_pass;
bool arbitrary_direction_pass;
bool parameter_variation_pass;
bool exact_value_check_pass;
bool near_cutoff_pass;
// Additional result data for exact checks
real energy_values[10];
Vec3<real> force_values[10];
};
// Check if two Vec3 values are close within tolerance
__device__ bool vec3_near(const Vec3<real> &a, const Vec3<real> &b,
real tolerance) {
return (fabs(a.x - b.x) < tolerance) && (fabs(a.y - b.y) < tolerance) &&
(fabs(a.z - b.z) < tolerance);
}
// Device kernel to run all tests
__global__ void lennard_jones_test_kernel(TestResults *results) {
// Default parameters
real sigma = 1.0;
real epsilon = 1.0;
real r_cutoff = 2.5;
real tolerance = 1e-10;
// Create LennardJones object on device
LennardJones lj(sigma, epsilon, r_cutoff);
// Zero Distance Test
{
Vec3<real> r = {0.0, 0.0, 0.0};
auto result = lj.calc_force_and_energy(r);
results->energy_values[0] = result.energy;
results->force_values[0] = result.force;
results->zero_distance_pass =
(result.energy == 0.0) &&
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result.force, tolerance);
}
// Beyond Cutoff Test
{
Vec3<real> r = {3.0, 0.0, 0.0};
auto result = lj.calc_force_and_energy(r);
results->energy_values[1] = result.energy;
results->force_values[1] = result.force;
results->beyond_cutoff_pass =
(result.energy == 0.0) &&
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result.force, tolerance);
}
// At Minimum Test
{
real min_dist = pow(2.0, 1.0 / 6.0) * sigma;
Vec3<real> r = {min_dist, 0.0, 0.0};
auto result = lj.calc_force_and_energy(r);
results->energy_values[2] = result.energy;
results->force_values[2] = result.force;
results->at_minimum_pass =
(fabs(result.energy + epsilon) < tolerance) &&
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result.force, tolerance);
}
// At Equilibrium Test
{
Vec3<real> r = {sigma, 0.0, 0.0};
auto result = lj.calc_force_and_energy(r);
results->energy_values[3] = result.energy;
results->force_values[3] = result.force;
results->at_equilibrium_pass = (fabs(result.energy) < tolerance) &&
(result.force.x > 0.0) &&
(fabs(result.force.y) < tolerance) &&
(fabs(result.force.z) < tolerance);
}
// Repulsive Region Test
{
Vec3<real> r = {0.8 * sigma, 0.0, 0.0};
auto result = lj.calc_force_and_energy(r);
results->energy_values[4] = result.energy;
results->force_values[4] = result.force;
results->repulsive_region_pass =
(result.energy > 0.0) && (result.force.x > 0.0);
}
// Attractive Region Test
{
Vec3<real> r = {1.5 * sigma, 0.0, 0.0};
auto result = lj.calc_force_and_energy(r);
results->energy_values[5] = result.energy;
results->force_values[5] = result.force;
results->attractive_region_pass =
(result.energy < 0.0) && (result.force.x < 0.0);
}
// Arbitrary Direction Test
{
Vec3<real> r = {1.0, 1.0, 1.0};
auto result = lj.calc_force_and_energy(r);
results->energy_values[6] = result.energy;
results->force_values[6] = result.force;
real r_mag = sqrt(r.squared_norm2());
Vec3<real> normalized_r = r.scale(1.0 / r_mag);
real force_dot_r = result.force.x * normalized_r.x +
result.force.y * normalized_r.y +
result.force.z * normalized_r.z;
results->arbitrary_direction_pass =
(force_dot_r < 0.0) &&
(fabs(result.force.x - result.force.y) < tolerance) &&
(fabs(result.force.y - result.force.z) < tolerance);
}
// Parameter Variation Test
{
real new_sigma = 2.0;
real new_epsilon = 0.5;
real new_r_cutoff = 5.0;
LennardJones lj2(new_sigma, new_epsilon, new_r_cutoff);
Vec3<real> r = {2.0, 0.0, 0.0};
auto result1 = lj.calc_force_and_energy(r);
auto result2 = lj2.calc_force_and_energy(r);
results->energy_values[7] = result2.energy;
results->force_values[7] = result2.force;
results->parameter_variation_pass = (result1.energy != result2.energy) &&
(result1.force.x != result2.force.x);
}
// Exact Value Check Test
{
LennardJones lj_exact(1.0, 1.0, 3.0);
Vec3<real> r = {1.5, 0.0, 0.0};
auto result = lj_exact.calc_force_and_energy(r);
results->energy_values[8] = result.energy;
results->force_values[8] = result.force;
real expected_energy = 4.0 * (pow(1.0 / 1.5, 12) - pow(1.0 / 1.5, 6));
real expected_force =
24.0 * (pow(1.0 / 1.5, 6) - 2.0 * pow(1.0 / 1.5, 12)) / 1.5;
results->exact_value_check_pass =
(fabs(result.energy - expected_energy) < tolerance) &&
(fabs(result.force.x + expected_force) < tolerance) &&
(fabs(result.force.y) < tolerance) &&
(fabs(result.force.z) < tolerance);
}
// Near Cutoff Test
{
real inside_cutoff = r_cutoff - 0.01;
real outside_cutoff = r_cutoff + 0.01;
Vec3<real> r_inside = {inside_cutoff, 0.0, 0.0};
Vec3<real> r_outside = {outside_cutoff, 0.0, 0.0};
auto result_inside = lj.calc_force_and_energy(r_inside);
auto result_outside = lj.calc_force_and_energy(r_outside);
results->energy_values[9] = result_inside.energy;
results->force_values[9] = result_inside.force;
results->near_cutoff_pass =
(result_inside.energy != 0.0) && (result_inside.force.x != 0.0) &&
(result_outside.energy == 0.0) &&
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result_outside.force, tolerance);
}
}
// Helper class for CUDA error checking
class CudaErrorCheck {
public:
static void checkAndThrow(cudaError_t err, const char *msg) {
if (err != cudaSuccess) {
std::string error_message =
std::string(msg) + ": " + cudaGetErrorString(err);
throw std::runtime_error(error_message);
}
}
};
// Google Test wrapper that runs the device tests
class LennardJonesCudaTest : public ::testing::Test {
protected:
void SetUp() override {
// Allocate device memory for results
CudaErrorCheck::checkAndThrow(
cudaMalloc(&d_results, sizeof(TestResults)),
"Failed to allocate device memory for test results");
}
void TearDown() override {
if (d_results) {
cudaFree(d_results);
d_results = nullptr;
}
}
// Helper function to run tests on device and get results
TestResults runDeviceTests() {
TestResults h_results;
// Clear device memory
CudaErrorCheck::checkAndThrow(cudaMemset(d_results, 0, sizeof(TestResults)),
"Failed to clear device memory");
// Run kernel with a single thread
lennard_jones_test_kernel<<<1, 1>>>(d_results);
// Check for kernel launch errors
CudaErrorCheck::checkAndThrow(cudaGetLastError(), "Kernel launch failed");
// Wait for kernel to complete
CudaErrorCheck::checkAndThrow(cudaDeviceSynchronize(),
"Kernel execution failed");
// Copy results back to host
CudaErrorCheck::checkAndThrow(cudaMemcpy(&h_results, d_results,
sizeof(TestResults),
cudaMemcpyDeviceToHost),
"Failed to copy results from device");
return h_results;
}
TestResults *d_results = nullptr;
};
// Define the actual test cases
TEST_F(LennardJonesCudaTest, DeviceZeroDistance) {
auto results = runDeviceTests();
EXPECT_TRUE(results.zero_distance_pass)
<< "Zero distance test failed on device. Energy: "
<< results.energy_values[0] << ", Force: (" << results.force_values[0].x
<< ", " << results.force_values[0].y << ", " << results.force_values[0].z
<< ")";
}
TEST_F(LennardJonesCudaTest, DeviceBeyondCutoff) {
auto results = runDeviceTests();
EXPECT_TRUE(results.beyond_cutoff_pass)
<< "Beyond cutoff test failed on device. Energy: "
<< results.energy_values[1];
}
TEST_F(LennardJonesCudaTest, DeviceAtMinimum) {
auto results = runDeviceTests();
EXPECT_TRUE(results.at_minimum_pass)
<< "At minimum test failed on device. Energy: "
<< results.energy_values[2];
}
TEST_F(LennardJonesCudaTest, DeviceAtEquilibrium) {
auto results = runDeviceTests();
EXPECT_TRUE(results.at_equilibrium_pass)
<< "At equilibrium test failed on device. Energy: "
<< results.energy_values[3] << ", Force x: " << results.force_values[3].x;
}
TEST_F(LennardJonesCudaTest, DeviceRepulsiveRegion) {
auto results = runDeviceTests();
EXPECT_TRUE(results.repulsive_region_pass)
<< "Repulsive region test failed on device. Energy: "
<< results.energy_values[4] << ", Force x: " << results.force_values[4].x;
}
TEST_F(LennardJonesCudaTest, DeviceAttractiveRegion) {
auto results = runDeviceTests();
EXPECT_TRUE(results.attractive_region_pass)
<< "Attractive region test failed on device. Energy: "
<< results.energy_values[5] << ", Force x: " << results.force_values[5].x;
}
TEST_F(LennardJonesCudaTest, DeviceArbitraryDirection) {
auto results = runDeviceTests();
EXPECT_TRUE(results.arbitrary_direction_pass)
<< "Arbitrary direction test failed on device.";
}
TEST_F(LennardJonesCudaTest, DeviceParameterVariation) {
auto results = runDeviceTests();
EXPECT_TRUE(results.parameter_variation_pass)
<< "Parameter variation test failed on device.";
}
TEST_F(LennardJonesCudaTest, DeviceExactValueCheck) {
auto results = runDeviceTests();
EXPECT_TRUE(results.exact_value_check_pass)
<< "Exact value check test failed on device. Energy: "
<< results.energy_values[8] << ", Force x: " << results.force_values[8].x;
}
TEST_F(LennardJonesCudaTest, DeviceNearCutoff) {
auto results = runDeviceTests();
EXPECT_TRUE(results.near_cutoff_pass)
<< "Near cutoff test failed on device. Inside energy: "
<< results.energy_values[9];
}