#include "pair_potentials.cuh" #include "precision.hpp" #include "gtest/gtest.h" #include class LennardJonesTest : public ::testing::Test { protected: void SetUp() override { // Default parameters sigma = 1.0; epsilon = 1.0; r_cutoff = 2.5; // Create default LennardJones object lj = new LennardJones(sigma, epsilon, r_cutoff); } void TearDown() override { delete lj; } real sigma; real epsilon; real r_cutoff; LennardJones *lj; // Helper function to compare Vec3 values with tolerance void expect_vec3_near(const Vec3 &expected, const Vec3 &actual, real tolerance) { EXPECT_NEAR(expected.x, actual.x, tolerance); EXPECT_NEAR(expected.y, actual.y, tolerance); EXPECT_NEAR(expected.z, actual.z, tolerance); } }; TEST_F(LennardJonesTest, ZeroDistance) { // At zero distance, the calculation should return zero force and energy Vec3 r = {0.0, 0.0, 0.0}; auto result = lj->calc_force_and_energy(r); EXPECT_EQ(0.0, result.energy); expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10); } TEST_F(LennardJonesTest, BeyondCutoff) { // Distance beyond cutoff should return zero force and energy Vec3 r = {3.0, 0.0, 0.0}; // 3.0 > r_cutoff (2.5) auto result = lj->calc_force_and_energy(r); EXPECT_EQ(0.0, result.energy); expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10); } TEST_F(LennardJonesTest, AtMinimum) { // The LJ potential has a minimum at r = 2^(1/6) * sigma real min_dist = std::pow(2.0, 1.0 / 6.0) * sigma; Vec3 r = {min_dist, 0.0, 0.0}; auto result = lj->calc_force_and_energy(r); // At minimum, force should be close to zero EXPECT_NEAR(-epsilon, result.energy, 1e-10); expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10); } TEST_F(LennardJonesTest, AtEquilibrium) { // At r = sigma, the energy should be zero and force should be repulsive Vec3 r = {sigma, 0.0, 0.0}; auto result = lj->calc_force_and_energy(r); EXPECT_NEAR(0.0, result.energy, 1e-10); EXPECT_GT(result.force.x, 0.0); // Force should be repulsive (positive x-direction) EXPECT_NEAR(0.0, result.force.y, 1e-10); EXPECT_NEAR(0.0, result.force.z, 1e-10); } TEST_F(LennardJonesTest, RepulsiveRegion) { // Test in the repulsive region (r < sigma) Vec3 r = {0.8 * sigma, 0.0, 0.0}; auto result = lj->calc_force_and_energy(r); // Energy should be positive and force should be repulsive EXPECT_GT(result.energy, 0.0); EXPECT_GT(result.force.x, 0.0); // Force should be repulsive } TEST_F(LennardJonesTest, AttractiveRegion) { // Test in the attractive region (sigma < r < r_min) Vec3 r = {1.5 * sigma, 0.0, 0.0}; auto result = lj->calc_force_and_energy(r); // Energy should be negative and force should be attractive EXPECT_LT(result.energy, 0.0); EXPECT_LT(result.force.x, 0.0); // Force should be attractive (negative x-direction) } TEST_F(LennardJonesTest, ArbitraryDirection) { // Test with a vector in an arbitrary direction Vec3 r = {1.0, 1.0, 1.0}; auto result = lj->calc_force_and_energy(r); // The force should be in the same direction as r but opposite sign // (attractive region) real r_mag = std::sqrt(r.squared_norm2()); // Calculate expected force direction (should be along -r) Vec3 normalized_r = r.scale(1.0 / r_mag); real force_dot_r = result.force.x * normalized_r.x + result.force.y * normalized_r.y + result.force.z * normalized_r.z; // In this case, we're at r = sqrt(3) * sigma which is in attractive region EXPECT_LT(force_dot_r, 0.0); // Force should be attractive // Force should be symmetric in all dimensions for this vector EXPECT_NEAR(result.force.x, result.force.y, 1e-10); EXPECT_NEAR(result.force.y, result.force.z, 1e-10); } TEST_F(LennardJonesTest, ParameterVariation) { // Test with different parameter values real new_sigma = 2.0; real new_epsilon = 0.5; real new_r_cutoff = 5.0; LennardJones lj2(new_sigma, new_epsilon, new_r_cutoff); Vec3 r = {2.0, 0.0, 0.0}; auto result1 = lj->calc_force_and_energy(r); auto result2 = lj2.calc_force_and_energy(r); // Results should be different with different parameters EXPECT_NE(result1.energy, result2.energy); EXPECT_NE(result1.force.x, result2.force.x); } TEST_F(LennardJonesTest, ExactValueCheck) { // Test with pre-calculated values for a specific case LennardJones lj_exact(1.0, 1.0, 3.0); Vec3 r = {1.5, 0.0, 0.0}; auto result = lj_exact.calc_force_and_energy(r); // Pre-calculated values (you may need to adjust these based on your specific // implementation) real expected_energy = 4.0 * (std::pow(1.0 / 1.5, 12) - std::pow(1.0 / 1.5, 6)); real expected_force = 24.0 * (std::pow(1.0 / 1.5, 6) - 2.0 * std::pow(1.0 / 1.5, 12)) / 1.5; EXPECT_NEAR(expected_energy, result.energy, 1e-10); EXPECT_NEAR(-expected_force, result.force.x, 1e-10); // Negative because force is attractive EXPECT_NEAR(0.0, result.force.y, 1e-10); EXPECT_NEAR(0.0, result.force.z, 1e-10); } TEST_F(LennardJonesTest, NearCutoff) { // Test behavior just inside and just outside the cutoff real inside_cutoff = r_cutoff - 0.01; real outside_cutoff = r_cutoff + 0.01; Vec3 r_inside = {inside_cutoff, 0.0, 0.0}; Vec3 r_outside = {outside_cutoff, 0.0, 0.0}; auto result_inside = lj->calc_force_and_energy(r_inside); auto result_outside = lj->calc_force_and_energy(r_outside); // Inside should have non-zero values EXPECT_NE(0.0, result_inside.energy); EXPECT_NE(0.0, result_inside.force.x); // Outside should be zero EXPECT_EQ(0.0, result_outside.energy); expect_vec3_near({0.0, 0.0, 0.0}, result_outside.force, 1e-10); }