- Add PairPotential Abstract class - Add Lennard-Jones potential that should work with both CUDA and C++ code - Add tests on HOST side for LJ potential
92 lines
2.2 KiB
Plaintext
92 lines
2.2 KiB
Plaintext
#ifndef POTENTIALS_H
|
|
#define POTENTIALS_H
|
|
|
|
#include "precision.hpp"
|
|
#include "vec3.h"
|
|
|
|
#ifdef __CUDACC__
|
|
#define CUDA_CALLABLE __host__ __device__
|
|
#else
|
|
#define CUDA_CALLABLE
|
|
#endif
|
|
|
|
/**
|
|
* Result struct for the Pair Potential
|
|
*/
|
|
struct ForceAndEnergy {
|
|
real energy;
|
|
Vec3<real> force;
|
|
|
|
CUDA_CALLABLE inline static ForceAndEnergy zero() {
|
|
return {0.0, {0.0, 0.0, 0.0}};
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Abstract implementation of a Pair Potential.
|
|
* Pair potentials are potentials which depend solely on the distance
|
|
* between two particles. These do not include multi-body potentials such as
|
|
* EAM
|
|
*
|
|
*/
|
|
struct PairPotential {
|
|
real m_rcutoffsq;
|
|
|
|
PairPotential(real rcutoff) : m_rcutoffsq(rcutoff * rcutoff) {};
|
|
#ifdef __CUDACC__
|
|
CUDA_CALLABLE ~PairPotential();
|
|
#else
|
|
virtual ~PairPotential() = 0;
|
|
#endif
|
|
|
|
/**
|
|
* Calculate the force and energy for a specific atom pair based on a
|
|
* displacement vector r.
|
|
*/
|
|
CUDA_CALLABLE virtual ForceAndEnergy calc_force_and_energy(Vec3<real> r) = 0;
|
|
};
|
|
|
|
/**
|
|
* Calculate the Lennard-Jones energy and force for the current particle pair
|
|
* described by displacement vector r
|
|
*/
|
|
struct LennardJones : PairPotential {
|
|
real m_epsilon;
|
|
real m_sigma;
|
|
|
|
CUDA_CALLABLE LennardJones(real sigma, real epsilon, real rcutoff)
|
|
: PairPotential(rcutoff), m_epsilon(epsilon), m_sigma(sigma) {};
|
|
|
|
CUDA_CALLABLE ForceAndEnergy calc_force_and_energy(Vec3<real> r) {
|
|
real rmagsq = r.squared_norm2();
|
|
if (rmagsq < this->m_rcutoffsq && rmagsq > 0.0) {
|
|
real inv_rmag = 1 / std::sqrt(rmagsq);
|
|
|
|
// Pre-Compute the terms (doing this saves on multiple devisions/pow
|
|
// function call)
|
|
real sigma_r = m_sigma * inv_rmag;
|
|
real sigma_r6 = sigma_r * sigma_r * sigma_r * sigma_r * sigma_r * sigma_r;
|
|
real sigma_r12 = sigma_r6 * sigma_r6;
|
|
|
|
// Get the energy
|
|
real energy = 4.0 * m_epsilon * (sigma_r12 - sigma_r6);
|
|
|
|
// Get the force vector
|
|
real force_mag =
|
|
4.0 * m_epsilon *
|
|
(12.0 * sigma_r12 * inv_rmag - 6.0 * sigma_r6 * inv_rmag);
|
|
Vec3<real> force = r.scale(force_mag * inv_rmag);
|
|
|
|
return {energy, force};
|
|
|
|
} else {
|
|
return ForceAndEnergy::zero();
|
|
}
|
|
};
|
|
|
|
~LennardJones() {};
|
|
};
|
|
|
|
PairPotential::~PairPotential() {};
|
|
#endif
|