cudaCAC/tests/unit_tests/test_potential.cpp
Alex Selimov 5155ec21aa Add basic LJ potential*
- Add PairPotential Abstract class
- Add Lennard-Jones potential that should work with both CUDA and C++
  code
- Add tests on HOST side for LJ potential
2025-04-17 16:07:26 -04:00

175 lines
5.7 KiB
C++

#include "pair_potentials.cuh"
#include "precision.hpp"
#include "gtest/gtest.h"
#include <cmath>
class LennardJonesTest : public ::testing::Test {
protected:
void SetUp() override {
// Default parameters
sigma = 1.0;
epsilon = 1.0;
r_cutoff = 2.5;
// Create default LennardJones object
lj = new LennardJones(sigma, epsilon, r_cutoff);
}
void TearDown() override { delete lj; }
real sigma;
real epsilon;
real r_cutoff;
LennardJones *lj;
// Helper function to compare Vec3 values with tolerance
void expect_vec3_near(const Vec3<real> &expected, const Vec3<real> &actual,
real tolerance) {
EXPECT_NEAR(expected.x, actual.x, tolerance);
EXPECT_NEAR(expected.y, actual.y, tolerance);
EXPECT_NEAR(expected.z, actual.z, tolerance);
}
};
TEST_F(LennardJonesTest, ZeroDistance) {
// At zero distance, the calculation should return zero force and energy
Vec3<real> r = {0.0, 0.0, 0.0};
auto result = lj->calc_force_and_energy(r);
EXPECT_EQ(0.0, result.energy);
expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10);
}
TEST_F(LennardJonesTest, BeyondCutoff) {
// Distance beyond cutoff should return zero force and energy
Vec3<real> r = {3.0, 0.0, 0.0}; // 3.0 > r_cutoff (2.5)
auto result = lj->calc_force_and_energy(r);
EXPECT_EQ(0.0, result.energy);
expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10);
}
TEST_F(LennardJonesTest, AtMinimum) {
// The LJ potential has a minimum at r = 2^(1/6) * sigma
real min_dist = std::pow(2.0, 1.0 / 6.0) * sigma;
Vec3<real> r = {min_dist, 0.0, 0.0};
auto result = lj->calc_force_and_energy(r);
// At minimum, force should be close to zero
EXPECT_NEAR(-epsilon, result.energy, 1e-10);
expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10);
}
TEST_F(LennardJonesTest, AtEquilibrium) {
// At r = sigma, the energy should be zero and force should be repulsive
Vec3<real> r = {sigma, 0.0, 0.0};
auto result = lj->calc_force_and_energy(r);
EXPECT_NEAR(0.0, result.energy, 1e-10);
EXPECT_GT(result.force.x,
0.0); // Force should be repulsive (positive x-direction)
EXPECT_NEAR(0.0, result.force.y, 1e-10);
EXPECT_NEAR(0.0, result.force.z, 1e-10);
}
TEST_F(LennardJonesTest, RepulsiveRegion) {
// Test in the repulsive region (r < sigma)
Vec3<real> r = {0.8 * sigma, 0.0, 0.0};
auto result = lj->calc_force_and_energy(r);
// Energy should be positive and force should be repulsive
EXPECT_GT(result.energy, 0.0);
EXPECT_GT(result.force.x, 0.0); // Force should be repulsive
}
TEST_F(LennardJonesTest, AttractiveRegion) {
// Test in the attractive region (sigma < r < r_min)
Vec3<real> r = {1.5 * sigma, 0.0, 0.0};
auto result = lj->calc_force_and_energy(r);
// Energy should be negative and force should be attractive
EXPECT_LT(result.energy, 0.0);
EXPECT_LT(result.force.x,
0.0); // Force should be attractive (negative x-direction)
}
TEST_F(LennardJonesTest, ArbitraryDirection) {
// Test with a vector in an arbitrary direction
Vec3<real> r = {1.0, 1.0, 1.0};
auto result = lj->calc_force_and_energy(r);
// The force should be in the same direction as r but opposite sign
// (attractive region)
real r_mag = std::sqrt(r.squared_norm2());
// Calculate expected force direction (should be along -r)
Vec3<real> normalized_r = r.scale(1.0 / r_mag);
real force_dot_r = result.force.x * normalized_r.x +
result.force.y * normalized_r.y +
result.force.z * normalized_r.z;
// In this case, we're at r = sqrt(3) * sigma which is in attractive region
EXPECT_LT(force_dot_r, 0.0); // Force should be attractive
// Force should be symmetric in all dimensions for this vector
EXPECT_NEAR(result.force.x, result.force.y, 1e-10);
EXPECT_NEAR(result.force.y, result.force.z, 1e-10);
}
TEST_F(LennardJonesTest, ParameterVariation) {
// Test with different parameter values
real new_sigma = 2.0;
real new_epsilon = 0.5;
real new_r_cutoff = 5.0;
LennardJones lj2(new_sigma, new_epsilon, new_r_cutoff);
Vec3<real> r = {2.0, 0.0, 0.0};
auto result1 = lj->calc_force_and_energy(r);
auto result2 = lj2.calc_force_and_energy(r);
// Results should be different with different parameters
EXPECT_NE(result1.energy, result2.energy);
EXPECT_NE(result1.force.x, result2.force.x);
}
TEST_F(LennardJonesTest, ExactValueCheck) {
// Test with pre-calculated values for a specific case
LennardJones lj_exact(1.0, 1.0, 3.0);
Vec3<real> r = {1.5, 0.0, 0.0};
auto result = lj_exact.calc_force_and_energy(r);
// Pre-calculated values (you may need to adjust these based on your specific
// implementation)
real expected_energy =
4.0 * (std::pow(1.0 / 1.5, 12) - std::pow(1.0 / 1.5, 6));
real expected_force =
24.0 * (std::pow(1.0 / 1.5, 6) - 2.0 * std::pow(1.0 / 1.5, 12)) / 1.5;
EXPECT_NEAR(expected_energy, result.energy, 1e-10);
EXPECT_NEAR(-expected_force, result.force.x,
1e-10); // Negative because force is attractive
EXPECT_NEAR(0.0, result.force.y, 1e-10);
EXPECT_NEAR(0.0, result.force.z, 1e-10);
}
TEST_F(LennardJonesTest, NearCutoff) {
// Test behavior just inside and just outside the cutoff
real inside_cutoff = r_cutoff - 0.01;
real outside_cutoff = r_cutoff + 0.01;
Vec3<real> r_inside = {inside_cutoff, 0.0, 0.0};
Vec3<real> r_outside = {outside_cutoff, 0.0, 0.0};
auto result_inside = lj->calc_force_and_energy(r_inside);
auto result_outside = lj->calc_force_and_energy(r_outside);
// Inside should have non-zero values
EXPECT_NE(0.0, result_inside.energy);
EXPECT_NE(0.0, result_inside.force.x);
// Outside should be zero
EXPECT_EQ(0.0, result_outside.energy);
expect_vec3_near({0.0, 0.0, 0.0}, result_outside.force, 1e-10);
}