Iniatialize repo

master
Alex Selimov 7 months ago
commit 40deba12f4

@ -0,0 +1,28 @@
# Notes on pandoc
**Requirements:**: pandoc and pandoc-crossref
All of the paper itself is written in article.md using pandoc flavor markdown combined with pandoc-crossref.
References for pandoc compatible markdown can be found at [](https://pandoc.org/MANUAL.html#pandocs-markdown).
Some benefits of markdown are:
- You can use your normal .bib reference file to automatically manage references.
- Pandoc markdown allows for tables using simple styling as observed in article.md.
- Equations can be written with latex styling
- You can reference figures and equations and have them automatically update!
This build uses a few lua filters included to get nicer behavior with word.
**How to build:**:
md->pdf:
```bash
pandoc article.md --pdf-engine=xelatex --lua-filter=./typesetting/scholarly-metadata.lua --lua-filter=./typesetting/author-info-blocks.lua --filter=pandoc-crossref --citeproc --bibliography=references.bib --csl=typesetting/els.csl -o article.pdf
```
md->docx:
```bash
pandoc article.md --lua-filter="./pandoc_lua_filters/scholarly-metadata.lua" --lua-filter="./pandoc_lua_filters/pagebreak.lua" --filter=pandoc-crossref --citeproc --bibliography="./references.bib" -o article.docx
```

Binary file not shown.

@ -0,0 +1,340 @@
---
title: "Effects of interdiffusion on shear response of semi-coherent {111} interfaces in Ni/Cu"
abstract: ""
author: Alex Selimov, Kevin Chu, David McDowell
###
### Bibliography settings
###
link-citations: true
###
### Formatting settings
###
documentclass: article
fontsize: 12pt
figPrefix: Fig.
tblPrefix: Table
#geometry: margin=1.0in
geometry: "left=3cm,right=3cm,top=2cm,bottom=2cm"
urlcolor: blue
header-includes: |
\usepackage{bm}
\usepackage{amsmath}
---
# Introduction
Nanolaminate composites exhibit properties that exceed those of the constituent materials as a result of the high density of interfaces present, resulting in improved yield strength, fatigue strength, radiation tolerance, and other mechanical properties [@zhu_tensile_2009; @Zhang_2012; @MISRA2006146; @Cao_2019; @S_enz_Trevizo_2020; @zhou_mechanical_2015].
These properties can be tailored through control of layer thickness [@banerjee_influence_2001; @zhang_length-scale-dependent_2011; @Snel_2017], modulation ratio [@Carpenter_2012; @zhang_modulation_2015], and through adjustment of interface properties, such as misfit dislocation density [@Zhang_2017a; @An_2019; @Yang_2020].
The interfaces play a fundamental role in the material plasticity controlling the generation of defects [@2013a;@wang_interface_2014], propagation of slip [@Xiang_2018; @1999a; @wang_atomistic_2008], and crack growth [@li_role_2018;@Zhou_2018].
Computational studies of nanolaminates aid in filtering the parameter space at a lower monetary/time cost than experimental studies and can determine prospective parameter combinations for improved material properties.
In the model forms used for such studies, a balance must be struck between the use of assumptions to simplify the problem and the associated reduction in accuracy.
Computational studies of nanolaminate materials commonly assume atomically sharp interfaces [@cheng_misfit_2007;@fu_molecular_2016; @Yin_2019;@Shao_2013a].
This assumption generally does not hold for interfaces in real nanolaminates due to interdiffusion of chemical species as a result of manufacturing processes [@Saito_1999; @Sun_2020; @Zhang_2020, @verdier2001some; @Yan_2016,@Jankowski_2007;@Nasim_2019].
These diffuse interfaces, generated through interdiffusion, complicate the interface structure and it's evolution under loading.
However, it also opens the possibility of tailored interface structures enabling designer nanolaminate materials with targeted mechanical responses such as in Cu/Ni nanolaminates manufactured through sputtering [@2018].
Control of nanolaminate layer compositions has been shown for Cu/Ni multilayers manufactured through sputtering by the application of annealing treatments [@Yan_2016].
There is a need to characterize more realistic interface structures to improve predictions of nanolaminate properties and ultimately aid nanolaminate design.
Interfaces in nanolaminate materials can be broadly grouped into coherent, semi-coherent, or incoherent interfaces which interact differently with lattice dislocations [@mastorakos_deformation_2009].
Semi-coherent interfaces form when both constituents have compatible crystal structures and layer thicknesses are above a material specific critical value [@rao_atomistic_2000].
They are characterized by a network of misfit dislocations where their spacing depends on the lattice constant mismatch between constituent materials.
These misfit dislocations resist slip transmission across the interface by reacting with incoming lattice dislocations [@dikken:hal-01572509;@Xu_2020].
The originating/terminating points for misfit dislocations, also referred to as misfit nodes, primarily contribute to the interface plasticity by serving as lattice dislocation generation points [@Shao_2015] and initiation sites for interface sliding [@Selimov_2021; @Yang_2020; @Chen_2018].
While the atomically sharp semi-coherent interface between Cu/Ni has been well studied, the effects of interdiffusion on interface properties/evolution and the resulting impact on the overall nanolaminate properties requires further investigation.
Interdiffusion has two primary effects on semi-coherent interface structure.
The first is the adjustment to the bulk layer lattice parameters which leads to a lower misfit dislocation density than in the pure case.
Experimental studies have noted shifts in lattice parameter for nanolaminate layers, measured through x-ray diffraction, with annealing and interdiffusion [@Jankowski_2007; @Moszner_2016; @Chl_dek_1996; @Hollanders_1990].
Misfit dislocation density is an important parameter, as work by Yang et al. [@Yang_2020] finds that the shear response of an interface can be connected to the misfit dislocation density, i.e. a higher misfit dislocation density is required for a larger shear strength.
Work by Xu et al. [@Xu_2020] showed that a higher misfit dislocation density was associated with a higher interface resistance to slip transmission.
Larger misfit dislocation spacings resulting from interdiffusion potentially decrease the interface resistance to slip transmission and the shear strength of the interface.
The second effect that interdiffusion can have on the interface structure is the presence of solute atoms which may serve as dislocation generation sites or as pinning points for interface misfit dislocations [@Wang_2020].
Generally, solutes impede dislocation motion through solute segregation to dislocation lines [@Pascuet_2019] or solute strengthening due to concentration fluctuations in a random alloy [@Varvenne_2017].
Molecular dynamics studies on the effects of Ni solutes on dislocation mobility in Cu/Ni solid solutions reveal two primary regimes.
At intermediate stress, the Ni solutes serve to impede dislocation motion while at higher stresses, at which point dislocation velocities begin to saturate, the Ni solutes serve to increase the dislocation velocity [@Bryukhanov_2020].
The barrier for cross-slip of screw dislocations is also reduced in random substitutional alloys due to the concentration fluctuations [@N_hring_2017].
Dislocation generation from semi-coherent interfaces due to Friedel-Escaig-like cross-slip of misfit dislocations has been reported in the literature [@Chen_2018].
Solutes at the interface may act to impede misfit dislocation motion through a solute-drag like effect [@1976] inhibiting interface sliding and increasing shear strength while simultaneously easing dislocation generation from the interface and reducing yield strength.
Determination of how these two competing effects affect interface properties requires atomistic simulations as the interaction between misfit density and solute effects alter atomic level restructuring pathways.
The literature shows some studies on the effects of alloying and interdiffusion on the properties of semi-coherent interfaces.
Work done by Gola et al. [@Gola_2018] found that alloying Cu layers with Ag in Cu/Ni bicrystals led to an increased resistance to both shear and slip transmission due to an increased misfit dislocation density as a result of an increase in lattice mismatch.
Wang et al. [@Wang_2020] studied the misfit dislocation structure of Ag/Cu bicrystals after alloying each individual layer with the other species.
They found a reduction in the yield stress as a result of increased alloying, a change in the dislocation generation site from the misfit dislocation nodes to points of impingement between solute clusters and misfit dislocations, and an increase to the interface shear resistance due to solute pinning of misfit dislocations.
Limitations in this work pertain to the fact that relatively low solute concentrations were studied, differences in misfit dislocation density between investigated geometries were small, and that alloying was done in only one of the two layers.
Interdiffusion in Cu/Au bicrystals was found to result in the development of a 3D dislocation structure at the diffuse interface from the initial 2D semi-coherent interface misfit structure [@gola2018structure], however mechanical properties of these interfaces were not studied.
There is a need for studies of bicrystal geometries with diffuse interfaces at different levels of interdiffusion to characterize the effects of misfit dislocation density and solutes on interface properties.
This work seeks to elucidate the effects of interdiffusion on the interface misfit dislocation structure and interface shear response.
Molecular dynamics (MD), molecular statics (MS), and Monte-Carlo (MC) methods are used to study the effects of solutes and decreased layer misfit on the properties of semi-coherent interfaces in the Cu/Ni system.
Solute concentrations of up to 30% in each layer are studied.
First the methodology and geometries used to study the effects of interdiffusion induced interface structure on the properties of the material are presented.
The characterization of the interface structure and the solute distribution follows.
Finally, the effects of solutes and adjusted misfit dislocation spacing on shear properties are discussed with a focus on interface sliding.
This work highlights the importance of accounting for interdiffusion induced interface structures for accurate modeling of nanolaminate materials.
# Methodology
## Geometries under investigation and simulation conditions
![a) Image of model geometry with 1% solute concentration. All investigated geometries have the same orientations. b) Common neighbor analysis of the interface structure with overlaid misfit dislocation lines computed via the Dislocation Extraction Algorithm [@stukowski_dislocation_2010]. Misfit dislocation density decreases with increasing solute concentration.](./img/methodology.png){#fig:methodology}
One of the model geometries under investigation in this work alongside the interface structures are presented in [@fig:methodology].
Geometries are generated over several steps using in house codes.
To account for the changes in the lattice parameters of the layers expected from interdiffusion of species, a rule of mixtures is used to calculate the lattice parameters for each of the nanolaminate layers.
Blocks of Cu/Ni solid solutions are generated by first creating pure blocks of Cu and Ni with the correct concentration dependent lattice parameter, shown in [@tbl:parameters].
Atoms are then randomly swapped to the opposite type until the desired solute concentration is achieved.
In this work the solute concentrations are set to the same value in both layers.
The two blocks of Cu/Ni solid solutions are then combined along the $[11\bar{1}]$ direction to form a semi-coherent interface.
This process generates a random distribution of solutes; however, solute concentrations are expected to be higher at interfaces [@Roussel_2006].
----------------------------------------------------------------------------------------------------------------------------------------------
Layer Concentration Lattice Dimensions Number of Misfit
Constants Atoms Spacing
-------------------- ------------------------ -------------------- --------------------- ------------------
Cu/Ni 3.615/3.524 \AA 51.2 x 29.6 x 36.9 nm 4,971,060 10.1 nm
Cu$_{.99}$Ni$_{.01}$/Ni$_{.99}$Cu$_{.01}$ 3.615/3.524 \AA 51.2 x 29.6 x 36.9 nm 4,971,060 10.1 nm
Cu$_{.9}$Ni$_{.1}$/Ni$_{.9}$Cu$_{.1}$ 3.606/3.533 \AA 42.7 x 24.7 x 36.9 nm 3,457,800 12.2 nm
Cu$_{.8}$Ni$_{.2}$/Ni$_{.8}$Cu$_{.2}$ 3.597/3.542 \AA 57.2 x 33.0 x 36.9 nm 6,178,320 17.0 nm
Cu$_{.7}$Ni$_{.3}$/Ni$_{.7}$Cu$_{.3}$ 3.588/3.551 \AA 43.0 x 24.8 x 36.9 nm 3,492,900 26.2 nm
----------------------------------------------------------------------------------------------------------------------------------------------
: Parameters for geometries under investigation. {#tbl:parameters}
To obtain a more accurate solute distribution, a hybrid MC/MD scheme, conducted with the Lammps simulation code [@Thompson_2022] is used.
First the interface structure is minimized using sequential conjugate gradient and FIRE [@bitzek_structural_2006] steps with increasing force tolerances.
During the conjugate gradient steps, the strain energy of the system, calculated by the Parrinello and Rahman expression [@parrinello_polymorphic_1981], is minimized using built in Lammps options.
After the interface structure is properly minimized, the hybrid MD/MC scheme is applied.
First the system is initialized to 700 K by applying a scaled gaussian velocity distribution and then relaxed using an NPT ensemble over 10 ps.
Following the relaxation, an additional 100 ps of dynamics in an NPT ensemble is conducted.
Every ten iterations, or 0.01 ps, two hundred attempts are made at swapping the types of two atoms in the system.
To maintain the prescribed solute concentration in each layer, the swaps attempts are restricted to two atoms within the same layer.
In total two million swaps are attempted, one million per layer.
This is a relatively low number of swaps compared to the overall model size.
Initial solute structures therefore may not correspond to the fully energy minimized ones, specifically considering the extent of solute segregation to misfit dislocations.
Analysis of model deformation, however, is not restricted to only the initial interface sliding.
The effect of initial solute structure on subsequent interface sliding or yielding occurring after deformation of the misfit pattern away from the initial position should not be significant.
Overall interface solute concentration is therefore more important, and the concentration profiles for the investigated geometries shown in [@fig:swaps_and_profile]b) exhibit increasing solute concentration with proximity to the interface as expected [@Roussel_2006].
Convergence of the system energies with successful swaps can be approximated by the change in energy per atom, as seen in [@fig:swaps_and_profile]a).
Observed fluctuations in the energy arises from the thermostatting process.
The change in energy per atom meets a tolerance of 1e-6 eV/atom.
Increased number of atomic swaps were not possible due to the computational cost.
![a) Change in per atom energy versus successful swaps. At higher number of successful swaps, the change in energy per atom approaches a value dependent on the solute concentration. Fluctuations occur as a result of the thermostatting applied. b) Concentration profiles for all interdiffused models. Solute concentrations near the interface are higher than in the bulk as expected.](./img/swaps_concentration.png){#fig:swaps_and_profile}
Periodic boundaries are used in all dimensions, approximating an infinite nanolaminate system with some constraint imparted by the periodic boundaries.
To ensure periodicity along the in-plane dimensions, the length of the simulation cell is set to a value which is a multiple of the lattice repeat distance for both layers.
Because the lattice repeat distance depends on the lattice constant, the model dimensions must be different for each solute concentration.
Efforts were taken to select the most similar dimensions, but variation in both in-plane dimensions is noted.
This work utilizes the Onat and Durukanoǧlu Cu/Ni potential [@onat_optimized_2014] due to their focus on fitting the Cu-Ni interaction term leading to improved accuracy of calculated mixing enthalpies compared to other EAM potentials.
It is also noted that because the lattice mismatch between Cu and Ni is small, the differences in the lattice constants between the different alloys studied is also small.
As a result, although the solute misfit volume is not constant between the different investigated geometries, the differences are small enough to be considered negligible.
In systems where the lattice constant mismatch is large this may not necessarily hold and the dependence of solute strength, through the atomic misfit volume, on the layer solute concentration may need to be considered.
Models are analyzed using Ovito [@Stukowski_2009] with the built-in Dislocation Extraction Algorithm (DXA) [@stukowski_dislocation_2010] used to determine positions and Burgers vectors of interface misfit dislocations.
The potential contribution to the virial stress [@zhou_new_2003] is used to calculate the stress of the models and is referred to as the interatomic potential stress for clarity.
**Kevin please add information about shear simulation here**
## Microrotation vector analysis of interface deformation
![a) Change in the interface misfit dislocation pattern for the 30% solute concentration model as a result of applied strain. b) Increased microrotation vector magnitude is associated with the structure change that results from the glide of interface misfits with higher magnitudes indicating more complex structure changes. Starting dislocation lines can be clearly observed as lines of lower microrotation. c) The displacement magnitude distribution does not show starting dislocation lines and instead exhibits a smooth distribution while d) the change in centrosymmetry distribution does not capture longer range deformation fields generated in the accomodation of the localized structure change .](./img/microrotation_example.png){#fig:micro_comparison}
In addition to commonly used metrics for analysis of atomistic models, such as Common Neighbor Analsyis (CNA) [@honeycutt1987molecular], the microrotation vector is also used to reveal in more detail the interface deformation.
The microrotation vector is defined as [@Tucker_2009; @Tucker_2011],
$$\phi_k = -\frac{1}{2}\varepsilon_{ijk}(R_\textrm{skew})_{ij} $$
Where $\varepsilon$ is the permutation symbol and $R_\textrm{skew}$ is the skew symmetric part of the rotation tensor in the right polar decomposition of the deformation gradient, i.e.,
$$\pmb{F}=\pmb{RU}$$
Analysis of the atomic microrotation vector has been previously applied to the Cu/Ni semi-coherent interface [@Selimov_2021] elucidating both magnitudes and directions of atomic restructuring associated with interface sliding.
Components of the microrotation vector describe the rotation of lattice vectors attributed to deformation such as dislocation slip, grain boundary sliding, or the glide of interface misfit dislocations.
Microrotation vector magnitudes reflect the degree of restructuring with distinct values quantified for a variety of deformation processes such as dislocation glide and grain boundary migration [@Tucker_2011].
The interested reader is referred to the previously mentioned works by Tucker et al. [@Tucker_2011] for a more in-depth description of the calculation of the microrotation vector.
The microrotation vector, atomic displacement vector, and change in centrosymmetry are compared in [@fig:micro_comparison] as metrics to analyze the evolution of the interface misfit dislocation pattern between after shearing for the 30% solute concentration model.
The microrotation vector shows lines of lower microrotation corresponding to the shift from the initial dislocation position to an fcc crystal structure, which requires less complex deformation then the transition from fcc to hcp which are observed as regions with higher microrotation vector magnitudes.
The displacement vector magnitude is distributed smoothly as observed in [@fig:micro_comparison]c) complicating the demarcation of regions that have undergone structure change.
This is because affine deformation of the atomic structure affects the value of the displacement vector and because the displacement vector does not consider the local atomic structure.
The change in centrosymmetry parameter, [@fig:micro_comparison]d), is able to capture changes to atomic crystal structure well but does not capture the longer range deformation fields associated with the local structure changes.
The microrotation vector thus serves as a powerful tool for analyzing the interface deformation.
## Excess volume analysis for tracking node positions
![Schematic describing excess volume analysis using Delanauy triangulation. where a) is the interface with atoms colored by CNA with green atoms in an fcc structure, red atoms in an hcp structure, blue atoms in a bcc structure, and white atoms in an undefined structure. b) is the excess volume plot of the Cu side of the interface for the 0% solute concentration model. Misfit dislocations and misfit dislocation nodes have high excess volume compared to fcc and hcp regions of the interface. c) is the interface filtered by excess volume to extract misfit node centroid positions. The inset image shows the triangular mesh used to calculate excess volume. ](./img/excess_volume_description.png){#fig:excess_volume_schematic}
It is desirable to track misfit node displacement to numerically characterize interface motion.
Misfit node displacement can then be compared to local deformation to understand the differences in interface sliding pathways.
For this purpose excess volume analysis, as originally presented by Shao et al. [@Shao_2015], is combined with a K-Means clustering algorithm [@scikit-learn] to determine the centroids of excess volume regions associated with misfit nodes.
The excess volume analysis uses a Delaunay Triangulation [@Virtanen_2020], as shown in [@fig:excess_volume_schematic].
The area of each triangle in the mesh is calculated.
The area associated with the alloy in bulk can be calculated using
$$ A^0=\frac{\sqrt3}{4}b^2_{\textrm{perfect}}$$
where the burgers vector ($b_\textrm{perfect}$) used is calculated from the lattice constant prescribed to the layer.
The area in bulk is subtracted from the area at the interface and then multiplied by an atomic layer height (h) to obtain the excess volume plots, such as the one presented in [@fig:excess_volume_schematic]b).
Excess volume is defined for each of the triangles in the mesh.
To determine the misfit node position, triangles with excess volumes below 0.2 \AA$^3$ are removed.
The centroid of the remaining triangles, which form clear groups at the misfit nodes as shown in [@fig:excess_volume_schematic]c), are then clustered using a K-Means clustering algorithm.
The centroids of these clusters correspond to misfit node centroid position and can be tracked with applied loading.
# Results and Discussion
## Investigation of solute clustering and solute segregation at the Cu/Ni interface
![Partial radial distribution functions for investigated concentrations before and after the hybrid MC/MD annealing for atoms within one atomic layer on either side of the interface. Clustering of Ni or Cu is not observed as seen by the increases to the Ni-Cu partial radial distribution function and decreases to Cu-Cu and Ni-Ni partial radial distribution functions.](./img/rdf_2layers.png){#fig:partial_gr}
All interface structures presented in [@fig:methodology]b) exhibit the well established spiral pattern associated with the Cu/Ni semi-coherent interface [@Shao_2013].
Characterization of interdiffusion induced interface structure requires characterization of both solute clustering and solute segregation at the interface.
Partial radial distribution functions calculated for all concentrations are presented in [@fig:partial_gr].
These partial radial distribution functions are calculated for interface atoms only and show that the hybrid MC/MD procedure generally leads to increased intermixing of chemical species.
Clustering is not promoted by the annealing process for the investigated geometries.
Additionally it is expected that solutes will segregate to misfit dislocations at the interface due to the associated excess volume.
To characterize this segregation, the Dislocation Extraction Algorithm (DXA) [@stukowski_dislocation_2010] is utilized to calculate points along the misfit dislocation lines.
Interface atoms within a radius of 15 \AA\ of these points are then determined and the fraction of those atoms which are solutes are calculated.
This process is repeated for interface atoms near misfit dislocation nodes.
Kernel density estimation is used to approximate the distribution of the solute atom fraction for all sampled points along the misfit dislocation lines.
![Kernel density estimate of the fraction of solute atoms within a radius of 15 \AA\ of points sampled from the misfit dislocation line and the misfit dislocation node positions. Dashed vertical lines represent the overall interface solute fraction. Significant solute segregation to both misfit dislocations and misfit nodes are observed. Solutes have only a small preference for misfit nodes over misfit dislocations. Inset figure is a schematic showcasing points used to generate misfit dislocation distribution and misfit node distribution.](./img/solute_fractions.png){#fig:solute_fractions}
The fraction of solute atoms near misfit dislocation lines generally and misfit dislocation nodes specifically are compared to the overall interface solute fraction in [@fig:solute_fractions].
It is observed that the atomic neighborhoods near misfit dislocation have higher solute fractions than the overall interface.
This confirms solute segregation to the misfit dislocation lines.
The misfit dislocation nodes have similar fractions of solute atoms in surrounding atomic neighborhoods as fractions near misfit dislocation lines.
The low standard deviation of the distribution for the 30% solute concentration annealed model is attributed to the small number of misfit nodes included within the geometry, necessary as a result of the very large misfit spacings.
The standard deviation for post-anneal solute fractions calculated for points along the misfit dislocation lines is approximately 0.02 for the 1% solute concentration model and 0.03 for the other solute concentrations.
This non-uniform solute segregation is expected to lead to a distribution of energy barriers for misfit dislocation glide as solute drag forces [@Mishin_2019] increase with increasing solute concentration as does the extent of pinning by solute configurations [@Olmsted_2005].
This is discussed in more detail in the following sections on the response of investigated geometries to applied shear.
## Effect of solute concentration on interface shear strength and misfit node glide
![Stress-strain response for different geometries under investigation under a) zx shear and b) zy shear. c) shows the distribution of stress maxima in both directions for the different geometries. Increased maximum stress values indicate solute strengthening of the interface.](./img/shear_strain_stress.png){#fig:shear_stress_strain}
Stress-strain curves for the investigated geometries under shear loading are presented in [@fig:shear_stress_strain]a-b).
It is observed that the presence of solutes increases the interface shear strength and resistance to sliding relative to the atomically sharp case as observed by the increase in the average stress maxima in [@fig:shear_stress_strain]c).
The spread of stress maxima values also increases, with the 30% model having the largest spread of approximately 0.07 GPa.
Neither average nor median stress maxima values show a clear trend with overall solute concentration.
This may result from the competing effects of increased solute concentration, which improves interface shear strength [@Wang_2020], and the reduction in misfit density, which is associated with reduced shear strength [@Yang_2020].
The spread of maximum stress values results from the various solute configurations encountered by the misfit dislocation pattern as interface sliding occurs.
These differing solute configurations offer different resistance to misfit dislocation glide and non-uniform strengthening.
The various solute configurations encountered may also result in the lower minimum stress values observed for the models with solutes present compared to the 0% solute concentration model.
As the misfit dislocations overcome solute configurations with higher resistance to interface sliding, a significant amount of stress is relaxed as the misfit pattern glides over regions of the interface with lower resistance to sliding.
The period of the oscillations observed in [@fig:shear_stress_strain]a-b) suggests that interface sliding does not occur uniformly.
In the case of the 0% solute concentration model, the stress builds up to the maximum value and is relaxed to a minimum value over very few strain steps.
In the presence of solutes, the stress build up and relaxation occurs gradually which can be explained by the glide of subsets of the misfit dislocations until they encounter solute configurations which have high resistance to glide.
Use of a statistically sampled interface shear strength in reduced-order models, as opposed to an average interface shear strength, more accurately considers the underlying random distribution of solutes at the interface and may lead to improved predictions of real nanolaminate response.
Alternative descriptions of the shear strength may be necessary for systems which form ordered patterns of solute clusters at the interface.
It is possible to deduce trends related to the competing effects of solutes and misfit dislocation density on interface shear strength from analysis of the initial yield points observed in [@fig:shear_stress_strain].
Comparison between the models with 0% solute and 1% solute isolates the effects of the solutes on the interface shear strength as the interface misfit densities are identical.
For this case it is observed that the presence of solute leads to increased shear strength as expected.
The extent that the misfit dislocation density reduces the shear strength cannot be isolated as cleanly.
However, it is noted from inspection of [@fig:solute_fractions] that the initial solute concentrations at misfit dislocation nodes are similar for the 10% and 20% models.
This is noted to be an artifact of the annealing steps due to the ratio of swaps to total model size being smaller for the 20% solute concentration model which may result in the outlier behavior observed.
This again should primarily affect the initial interface sliding, as increases in the overall solute fraction at the interface resulting from the hybrid MC/MD annealing are similar for all investigated models.
Because the misfit dislocation nodes initiate interface sliding [@Yang_2020] and because the solute concentrations at the misfit nodes are similar, comparison of the initial interface shear strength provides insight into the role that misfit dislocation density plays.
As expected, the decrease in misfit dislocation density leads to a reduction in the shear strength.
The cause for this reduction in the shear strength will be discussed in future sections.
Further work is necessary to directly isolate these competing effects and to determine the relationship between overall solute concentration and resulting shear strength.
![Range of misfit node displacments resulting from the application of a single strain increment for all solute concentration models. The node displacement is calculated relative to misfit node position prior to application of a single strain increment. The increased spread of node displacement values suggests distributed resistance to misfit dislocation glide along the interface. The 0% exhibits very uniform misfit node displacements for all strain increment applications.](./img/node_disp_versus_strain.png){#fig:node_disp_strain}
It is possible to track the misfit node displacements by using excess volume analysis to determine misfit node centroids during loading.
The displacement as a result of a single strain step increment can then be calculated, and is plotted in [@fig:node_disp_strain] for several strain increments.
The 0% solute concentration model exhibits uniform node displacements with all misfit dislocation nodes gliding similar amounts for each strain increment.
This is not the case for the models containing solutes.
Addition of solutes is observed to increase the spread of node displacements indicating that for any given strain step, only a subset of the misfit dislocation nodes accommodate the imposed strain through glide.
This again suggests non-uniform resistance to misfit node glide and piecewise interface sliding.
The increased node displacement with larger solute concentrations may result from either of two causes.
Either misfit node glide is facilitated by the increasing solute concentration, resulting in larger displacements per strain increment, or that local solute configurations lead to significant variation in the interface resistance to misfit glide and as a result larger node displacements accompany overcoming these regions of locally increased resistance.
In reality both causes may be contributing factors as the increase in node displacements between the 0% and 10% solute concentration models corresponds to an improvement in shear strength, while the increase between the 10% and 20% solute concentration models corresponds to a decrease.
Analysis of energy changes associated with interface sliding in future sections will discuss this in more detail.
## Microrotation vector analysis of interface deformation and activation of misfit dislocation glide
![Interface microrotation maps for all solute concentrations subjected to a shear strain step which causes deformation of the interface misfit pattern. It is observed that the 0% solute concentration model exhibits a homogeneous microrotation distribution for atoms near misfit dislocations and misfit nodes resulting from uniform glide of the misfit dislocations. Models with solutes exhibit non-uniform distribution of microrotation values near misfit dislocations and nodes. This suggests distributed energy barriers resulting from the differing local solute environment which leads to glide of only portions of the interface misfit dislocations at any specified strain step.](./img/microrotation_interface.png){#fig:interface_micro width=80%}
Examples of interface atom microrotation maps are shown in [@fig:interface_micro] for all geometries subject to a shear strain which results in deformation of the interface misfit dislocation pattern.
A few observations can be made for the presented geometries.
First, the 0% solute concentration model exhibits a uniform distribution of atomic microrotation magnitudes.
Maximum values are noted at the misfit nodes accompanied by regions of lower microrotation values near misfit dislocation lines.
Introduction of solute leads to a heterogeneous distribution of microrotation values with atoms near certain misfit nodes and misfit dislocations exhibiting large microrotation magnitudes while atoms near other nodes have microrotation magnitudes close to zero.
This again suggests differing resistances to misfit dislocation glide due to misfit dislocation/solute configurations formed as a result of the random distribution of solutes.
The 0% solute concentration model has a uniform distribution of energy barriers and as a result, applied strain leads to uniform misfit dislocation glide.
Whether the local resistance to glide depends primarily on the local solute content will be discussed later.
The second main observation is that the magnitude of the microrotation vector seems to increase with the presence of solutes.
This is observed by the brighter regions near misfit nodes for the models containing solutes and suggests that increased atomic restructuring accompanies interface sliding in those models.
Visual inspection of these microrotation vector maps is not, however, sufficient for analyzing the deformation of the interface structures.
Instead, numerical analysis of the microrotation vector distribution over several strain steps can characterize factors such as the degree of uniformity for interface sliding or degrees of atomic restructuring associated with interface sliding with relation to the overall solute concentration.
An example of such analysis is the relationship between the microrotation vector magnitudes for atoms at misfit nodes and the interface deformation.
This is done by selecting atoms with microrotation vector magnitudes greater than 0.06 and grouping them together using a KMeans clustering algorithm.
Each cluster of atoms can then be assigned to a specific node by finding the minimum distance between the atom cluster and the misfit node centroid calculated via the previously described excess volume analysis.
These clusters of deformed atoms are only mapped if their centroids differ by at most the node displacement to ensure that only atoms participating in misfit node glide are isolated.
The filter value of 0.06, slightly less than 0.07 which has been shown in the literature to correspond to full dislocation glide [@Tucker_2011], is selected as it is the minimum cutoff which cleanly isolates misfit nodes that have undergone some amount of displacement.
That it is slightly less than the value for full dislocation glide suggests that certain atoms at misfit dislocation nodes may not fully transition between separate atomic structures.
This may be the case for an atom that remains within the region of high atomic structure distortion, resulting from the strain fields associated with misfit nodes, before and after the misfit node displacement.
![Average and sum of microrotation vector magnitudes for atoms which have undergone deformation due to the glide of misfit nodes versus the displacement of that node. Larger node displacements are associated with both larger microrotation vector magnitude sums and averages. The increase in average misfit node microrotation with displacement suggests more complex atomic structure deformation with larger misfit node displacements while the increased sum in average misfit node microrotation suggests participation of more atoms in the misfit node glide.](./img/micro_analysis.png){#fig:micro_analysis}
The relationship between both the average and sum of the microrotation vector magnitudes for atoms deformed by misfit node glide are shown in [@fig:micro_analysis].
The average atomic microrotation vector magnitude at a node and its displacement exhibits a clear positive correlation.
Larger node displacements lead to the sweeping over of larger regions by misfit nodes as they glide, increasing the atoms which have undergone the full deformation process associated with interface sliding.
Smaller node displacements lead to smaller swept areas and atoms at the glide front may end up in the misfit node core, undergoing only a portion of the atomic structure change associated with interface sliding.
The summed microrotation vector magnitude presented in [@fig:micro_analysis] confirms this argument more clearly by the larger values noted at larger displacements.
It also shows that the 20% solute concentration model tends to exhibit the larger sums for any given node displacement which may be related to the reduced shear strength noted compared to the other geometries.
This is discussed in more detail in the following section.
While there is a clear relationship between the microrotation at a node and its displacement, a large spread in values is still noted.
Analysis of the solute fractions for atoms which are deformed by the glide of a misfit node can provide insight into whether the local solute environment causes either the spread in the misfit node displacements observed or the spread in the microrotation values for a given node displacement.
As shown in [@fig:solute_relationship], the local solute environment does not correlate strongly with either the average node microrotation or the node displacement.
This suggests that local misfit node glide does not occur independently and is instead coupled to the configuration formed between the entire misfit pattern and the solute atoms.
Characterization of these configurations through more complex atomic structure analysis such as the smooth overlap of atomic positions (SOAP) metric [@Bart_k_2013].
![Plots of node displacement versus solute concentration and mean node microrotation versus solute fraction for atoms which undergo structure change due to the glide of misfit nodes.
No clear relationship between solute fraction and either misfit node displacement or average microrotation is observed. This indicates that misfit node glide is not a localized event and is instead dependent on the longer range configuration formed by the misfit pattern and solutes.](./img/solute_analysis.png){#fig:solute_relationship}
The focus so far has been on quantifying misfit node glide and the associated deformation; however, glide of misfit dislocations is also expected to occur.
To quantify and compare the deformation of misfit dislocations and misfit nodes, average microrotation vector magnitudes in atomic neighborhoods surround points along the misfit dislocation lines and the misfit nodes.
These atomic neighborhoods are calculated using the same methodology as used to calculate the solute fractions in [@fig:solute_fractions].
The distribution of averaged microrotation vector magnitudes over several strain increments are then plotted as box plots and shown in [@fig:mean_micro_frac].
The distribution of average microrotation vector magnitudes shows that misfit nodes are the primary sites of interface structure deformation while misfit dislocations are secondary sites.
Both of these are higher than the interface average as expected.
This trend matches the expected deformation pathway of Cu/Ni semi-coherent interfaces, which has been shown to initiate at misfit nodes and then progress along the misfit dislocation lines [@Chen_2018].
An increase in the spread of values accompanies the increase in solute concentration which has previously discussed to result from the piecewise interface sliding of subsets of misfit nodes.
Not only does the atomic deformation associated with misfit node glide increase, measured through the increase in the microrotation values, so too does the atomic deformation associated with misfit dislocations themselves.
The 0% and 1% models exhibit very similar microrotation distributions for atoms near misfit dislocations.
Further increases to the solute fraction lead to increasing microrotation for atoms near misfit dislocations with the 20% solute concentration model exhibiting the largest values.
This analysis reveals a transition from primarily misfit node glide to a combination of misfit dislocation and misfit node glide with increasing solute concentration.
![Box plots depicting distribution of microrotation magnitude for atoms within a spherical shell of 15 \AA\ near misfit dislocations and misfit dislocation nodes averaged over several strain steps. Points mark outlier values. Line plots mark average values with red denoting the overall interface average value. As expected, atoms near misfit nodes exhibit the highest degree of restructuring as determined by the microrotation magnitude. Increased solute concentration increases both the spread of microrotation values and the maximum values observed but does not change the average significantly. Increased spread in observed values implies increased spread in the local resistance to misfit dislocation glide.](./img/meanMicrorotationFraction.png){#fig:mean_micro_frac}
## Qualitative comparisons of energy barriers for interface sliding
![Calculated change in energy for atoms that have undergone node deformation for different reference strains. Inset image shows the](./img/energy_barrier_inset.png)
# Conclusions
# Acknowledgements
This work is based on research supported by the National Science Foundation under the Grants CMMI-1761553 and CMMI-1761512. All presented simulations were conducted using XSEDE resources under the allocation TG-MSS150010.
\newpage
# References

Binary file not shown.

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 18 MiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 294 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 219 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 377 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 128 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 2.2 MiB

@ -0,0 +1,896 @@
<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="720pt" height="360pt" viewBox="0 0 720 360" xmlns="http://www.w3.org/2000/svg" version="1.1">
<metadata>
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<cc:Work>
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
<dc:date>2022-05-20T04:57:04.281663</dc:date>
<dc:format>image/svg+xml</dc:format>
<dc:creator>
<cc:Agent>
<dc:title>Matplotlib v3.5.2, https://matplotlib.org/</dc:title>
</cc:Agent>
</dc:creator>
</cc:Work>
</rdf:RDF>
</metadata>
<defs>
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
</defs>
<g id="figure_1">
<g id="patch_1">
<path d="M 0 360
L 720 360
L 720 0
L 0 0
z
" style="fill: #ffffff"/>
</g>
<g id="axes_1">
<g id="patch_2">
<path d="M 108.18 293.22
L 391.65 293.22
L 391.65 39.12
L 108.18 39.12
z
" style="fill: #ffffff"/>
</g>
<g id="matplotlib.axis_1">
<g id="xtick_1">
<g id="line2d_1">
<defs>
<path id="m61869f0981" d="M 0 0
L 0 6
" style="stroke: #262626; stroke-width: 1.25"/>
</defs>
<g>
<use xlink:href="#m61869f0981" x="164.015" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_1">
<!-- 0.001 -->
<g style="fill: #262626" transform="translate(140.396797 315.257422)scale(0.165 -0.165)">
<defs>
<path id="DejaVuSans-30" d="M 2034 4250
Q 1547 4250 1301 3770
Q 1056 3291 1056 2328
Q 1056 1369 1301 889
Q 1547 409 2034 409
Q 2525 409 2770 889
Q 3016 1369 3016 2328
Q 3016 3291 2770 3770
Q 2525 4250 2034 4250
z
M 2034 4750
Q 2819 4750 3233 4129
Q 3647 3509 3647 2328
Q 3647 1150 3233 529
Q 2819 -91 2034 -91
Q 1250 -91 836 529
Q 422 1150 422 2328
Q 422 3509 836 4129
Q 1250 4750 2034 4750
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-2e" d="M 684 794
L 1344 794
L 1344 0
L 684 0
L 684 794
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-31" d="M 794 531
L 1825 531
L 1825 4091
L 703 3866
L 703 4441
L 1819 4666
L 2450 4666
L 2450 531
L 3481 531
L 3481 0
L 794 0
L 794 531
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-31" x="222.65625"/>
</g>
</g>
</g>
<g id="xtick_2">
<g id="line2d_2">
<g>
<use xlink:href="#m61869f0981" x="221.281667" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_2">
<!-- 0.002 -->
<g style="fill: #262626" transform="translate(197.663464 315.257422)scale(0.165 -0.165)">
<defs>
<path id="DejaVuSans-32" d="M 1228 531
L 3431 531
L 3431 0
L 469 0
L 469 531
Q 828 903 1448 1529
Q 2069 2156 2228 2338
Q 2531 2678 2651 2914
Q 2772 3150 2772 3378
Q 2772 3750 2511 3984
Q 2250 4219 1831 4219
Q 1534 4219 1204 4116
Q 875 4013 500 3803
L 500 4441
Q 881 4594 1212 4672
Q 1544 4750 1819 4750
Q 2544 4750 2975 4387
Q 3406 4025 3406 3419
Q 3406 3131 3298 2873
Q 3191 2616 2906 2266
Q 2828 2175 2409 1742
Q 1991 1309 1228 531
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-32" x="222.65625"/>
</g>
</g>
</g>
<g id="xtick_3">
<g id="line2d_3">
<g>
<use xlink:href="#m61869f0981" x="278.548333" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_3">
<!-- 0.003 -->
<g style="fill: #262626" transform="translate(254.93013 315.257422)scale(0.165 -0.165)">
<defs>
<path id="DejaVuSans-33" d="M 2597 2516
Q 3050 2419 3304 2112
Q 3559 1806 3559 1356
Q 3559 666 3084 287
Q 2609 -91 1734 -91
Q 1441 -91 1130 -33
Q 819 25 488 141
L 488 750
Q 750 597 1062 519
Q 1375 441 1716 441
Q 2309 441 2620 675
Q 2931 909 2931 1356
Q 2931 1769 2642 2001
Q 2353 2234 1838 2234
L 1294 2234
L 1294 2753
L 1863 2753
Q 2328 2753 2575 2939
Q 2822 3125 2822 3475
Q 2822 3834 2567 4026
Q 2313 4219 1838 4219
Q 1578 4219 1281 4162
Q 984 4106 628 3988
L 628 4550
Q 988 4650 1302 4700
Q 1616 4750 1894 4750
Q 2613 4750 3031 4423
Q 3450 4097 3450 3541
Q 3450 3153 3228 2886
Q 3006 2619 2597 2516
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-33" x="222.65625"/>
</g>
</g>
</g>
<g id="xtick_4">
<g id="line2d_4">
<g>
<use xlink:href="#m61869f0981" x="335.815" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_4">
<!-- 0.004 -->
<g style="fill: #262626" transform="translate(312.196797 315.257422)scale(0.165 -0.165)">
<defs>
<path id="DejaVuSans-34" d="M 2419 4116
L 825 1625
L 2419 1625
L 2419 4116
z
M 2253 4666
L 3047 4666
L 3047 1625
L 3713 1625
L 3713 1100
L 3047 1100
L 3047 0
L 2419 0
L 2419 1100
L 313 1100
L 313 1709
L 2253 4666
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-34" x="222.65625"/>
</g>
</g>
</g>
<g id="text_5">
<!-- Strain -->
<g style="fill: #262626" transform="translate(223.253906 336.366094)scale(0.18 -0.18)">
<defs>
<path id="DejaVuSans-53" d="M 3425 4513
L 3425 3897
Q 3066 4069 2747 4153
Q 2428 4238 2131 4238
Q 1616 4238 1336 4038
Q 1056 3838 1056 3469
Q 1056 3159 1242 3001
Q 1428 2844 1947 2747
L 2328 2669
Q 3034 2534 3370 2195
Q 3706 1856 3706 1288
Q 3706 609 3251 259
Q 2797 -91 1919 -91
Q 1588 -91 1214 -16
Q 841 59 441 206
L 441 856
Q 825 641 1194 531
Q 1563 422 1919 422
Q 2459 422 2753 634
Q 3047 847 3047 1241
Q 3047 1584 2836 1778
Q 2625 1972 2144 2069
L 1759 2144
Q 1053 2284 737 2584
Q 422 2884 422 3419
Q 422 4038 858 4394
Q 1294 4750 2059 4750
Q 2388 4750 2728 4690
Q 3069 4631 3425 4513
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-74" d="M 1172 4494
L 1172 3500
L 2356 3500
L 2356 3053
L 1172 3053
L 1172 1153
Q 1172 725 1289 603
Q 1406 481 1766 481
L 2356 481
L 2356 0
L 1766 0
Q 1100 0 847 248
Q 594 497 594 1153
L 594 3053
L 172 3053
L 172 3500
L 594 3500
L 594 4494
L 1172 4494
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-72" d="M 2631 2963
Q 2534 3019 2420 3045
Q 2306 3072 2169 3072
Q 1681 3072 1420 2755
Q 1159 2438 1159 1844
L 1159 0
L 581 0
L 581 3500
L 1159 3500
L 1159 2956
Q 1341 3275 1631 3429
Q 1922 3584 2338 3584
Q 2397 3584 2469 3576
Q 2541 3569 2628 3553
L 2631 2963
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-61" d="M 2194 1759
Q 1497 1759 1228 1600
Q 959 1441 959 1056
Q 959 750 1161 570
Q 1363 391 1709 391
Q 2188 391 2477 730
Q 2766 1069 2766 1631
L 2766 1759
L 2194 1759
z
M 3341 1997
L 3341 0
L 2766 0
L 2766 531
Q 2569 213 2275 61
Q 1981 -91 1556 -91
Q 1019 -91 701 211
Q 384 513 384 1019
Q 384 1609 779 1909
Q 1175 2209 1959 2209
L 2766 2209
L 2766 2266
Q 2766 2663 2505 2880
Q 2244 3097 1772 3097
Q 1472 3097 1187 3025
Q 903 2953 641 2809
L 641 3341
Q 956 3463 1253 3523
Q 1550 3584 1831 3584
Q 2591 3584 2966 3190
Q 3341 2797 3341 1997
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-69" d="M 603 3500
L 1178 3500
L 1178 0
L 603 0
L 603 3500
z
M 603 4863
L 1178 4863
L 1178 4134
L 603 4134
L 603 4863
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-6e" d="M 3513 2113
L 3513 0
L 2938 0
L 2938 2094
Q 2938 2591 2744 2837
Q 2550 3084 2163 3084
Q 1697 3084 1428 2787
Q 1159 2491 1159 1978
L 1159 0
L 581 0
L 581 3500
L 1159 3500
L 1159 2956
Q 1366 3272 1645 3428
Q 1925 3584 2291 3584
Q 2894 3584 3203 3211
Q 3513 2838 3513 2113
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-53"/>
<use xlink:href="#DejaVuSans-74" x="63.476562"/>
<use xlink:href="#DejaVuSans-72" x="102.685547"/>
<use xlink:href="#DejaVuSans-61" x="143.798828"/>
<use xlink:href="#DejaVuSans-69" x="205.078125"/>
<use xlink:href="#DejaVuSans-6e" x="232.861328"/>
</g>
</g>
</g>
<g id="matplotlib.axis_2">
<g id="ytick_1">
<g id="line2d_5">
<defs>
<path id="mfb1a04ca76" d="M 0 0
L -6 0
" style="stroke: #262626; stroke-width: 1.25"/>
</defs>
<g>
<use xlink:href="#mfb1a04ca76" x="108.18" y="279.710802" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_6">
<!-- 0.0000 -->
<g style="fill: #262626" transform="translate(40.945469 285.979513)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-30" x="222.65625"/>
<use xlink:href="#DejaVuSans-30" x="286.279297"/>
</g>
</g>
</g>
<g id="ytick_2">
<g id="line2d_6">
<g>
<use xlink:href="#mfb1a04ca76" x="108.18" y="236.163685" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_7">
<!-- 0.0005 -->
<g style="fill: #262626" transform="translate(40.945469 242.432396)scale(0.165 -0.165)">
<defs>
<path id="DejaVuSans-35" d="M 691 4666
L 3169 4666
L 3169 4134
L 1269 4134
L 1269 2991
Q 1406 3038 1543 3061
Q 1681 3084 1819 3084
Q 2600 3084 3056 2656
Q 3513 2228 3513 1497
Q 3513 744 3044 326
Q 2575 -91 1722 -91
Q 1428 -91 1123 -41
Q 819 9 494 109
L 494 744
Q 775 591 1075 516
Q 1375 441 1709 441
Q 2250 441 2565 725
Q 2881 1009 2881 1497
Q 2881 1984 2565 2268
Q 2250 2553 1709 2553
Q 1456 2553 1204 2497
Q 953 2441 691 2322
L 691 4666
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-30" x="222.65625"/>
<use xlink:href="#DejaVuSans-35" x="286.279297"/>
</g>
</g>
</g>
<g id="ytick_3">
<g id="line2d_7">
<g>
<use xlink:href="#mfb1a04ca76" x="108.18" y="192.616568" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_8">
<!-- 0.0010 -->
<g style="fill: #262626" transform="translate(40.945469 198.885279)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-31" x="222.65625"/>
<use xlink:href="#DejaVuSans-30" x="286.279297"/>
</g>
</g>
</g>
<g id="ytick_4">
<g id="line2d_8">
<g>
<use xlink:href="#mfb1a04ca76" x="108.18" y="149.069451" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_9">
<!-- 0.0015 -->
<g style="fill: #262626" transform="translate(40.945469 155.338162)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-31" x="222.65625"/>
<use xlink:href="#DejaVuSans-35" x="286.279297"/>
</g>
</g>
</g>
<g id="ytick_5">
<g id="line2d_9">
<g>
<use xlink:href="#mfb1a04ca76" x="108.18" y="105.522335" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_10">
<!-- 0.0020 -->
<g style="fill: #262626" transform="translate(40.945469 111.791046)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-32" x="222.65625"/>
<use xlink:href="#DejaVuSans-30" x="286.279297"/>
</g>
</g>
</g>
<g id="ytick_6">
<g id="line2d_10">
<g>
<use xlink:href="#mfb1a04ca76" x="108.18" y="61.975218" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_11">
<!-- 0.0025 -->
<g style="fill: #262626" transform="translate(40.945469 68.243929)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-32" x="222.65625"/>
<use xlink:href="#DejaVuSans-35" x="286.279297"/>
</g>
</g>
</g>
<g id="text_12">
<!-- $\Delta E/V$ (eV/$\AA^3$) -->
<g style="fill: #262626" transform="translate(33.202031 223.14)rotate(-90)scale(0.18 -0.18)">
<defs>
<path id="DejaVuSans-394" d="M 2188 4044
L 906 525
L 3472 525
L 2188 4044
z
M 50 0
L 1831 4666
L 2547 4666
L 4325 0
L 50 0
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-Oblique-45" d="M 1081 4666
L 4031 4666
L 3928 4134
L 1606 4134
L 1338 2753
L 3566 2753
L 3463 2222
L 1234 2222
L 909 531
L 3284 531
L 3181 0
L 172 0
L 1081 4666
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-2f" d="M 1625 4666
L 2156 4666
L 531 -594
L 0 -594
L 1625 4666
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-Oblique-56" d="M 1319 0
L 500 4666
L 1119 4666
L 1797 653
L 4063 4666
L 4750 4666
L 2053 0
L 1319 0
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-20" transform="scale(0.015625)"/>
<path id="DejaVuSans-28" d="M 1984 4856
Q 1566 4138 1362 3434
Q 1159 2731 1159 2009
Q 1159 1288 1364 580
Q 1569 -128 1984 -844
L 1484 -844
Q 1016 -109 783 600
Q 550 1309 550 2009
Q 550 2706 781 3412
Q 1013 4119 1484 4856
L 1984 4856
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-65" d="M 3597 1894
L 3597 1613
L 953 1613
Q 991 1019 1311 708
Q 1631 397 2203 397
Q 2534 397 2845 478
Q 3156 559 3463 722
L 3463 178
Q 3153 47 2828 -22
Q 2503 -91 2169 -91
Q 1331 -91 842 396
Q 353 884 353 1716
Q 353 2575 817 3079
Q 1281 3584 2069 3584
Q 2775 3584 3186 3129
Q 3597 2675 3597 1894
z
M 3022 2063
Q 3016 2534 2758 2815
Q 2500 3097 2075 3097
Q 1594 3097 1305 2825
Q 1016 2553 972 2059
L 3022 2063
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-56" d="M 1831 0
L 50 4666
L 709 4666
L 2188 738
L 3669 4666
L 4325 4666
L 2547 0
L 1831 0
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-Oblique-c5" d="M 3188 5081
Q 3188 5278 3048 5417
Q 2909 5556 2713 5556
Q 2513 5556 2377 5420
Q 2241 5284 2241 5081
Q 2241 4884 2377 4746
Q 2513 4609 2713 4609
Q 2909 4609 3048 4746
Q 3188 4884 3188 5081
z
M 2203 4397
Q 2034 4513 1945 4689
Q 1856 4866 1856 5081
Q 1856 5438 2106 5689
Q 2356 5941 2713 5941
Q 3069 5941 3320 5689
Q 3572 5438 3572 5081
Q 3572 4834 3458 4643
Q 3344 4453 3128 4341
L 3938 0
L 3278 0
L 3084 1197
L 984 1197
L 325 0
L -341 0
L 2203 4397
z
M 2584 4044
L 1275 1722
L 2988 1722
L 2584 4044
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-29" d="M 513 4856
L 1013 4856
Q 1481 4119 1714 3412
Q 1947 2706 1947 2009
Q 1947 1309 1714 600
Q 1481 -109 1013 -844
L 513 -844
Q 928 -128 1133 580
Q 1338 1288 1338 2009
Q 1338 2731 1133 3434
Q 928 4138 513 4856
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-394" transform="translate(0 0.171875)"/>
<use xlink:href="#DejaVuSans-Oblique-45" transform="translate(68.408203 0.171875)"/>
<use xlink:href="#DejaVuSans-2f" transform="translate(131.591797 0.171875)"/>
<use xlink:href="#DejaVuSans-Oblique-56" transform="translate(165.283203 0.171875)"/>
<use xlink:href="#DejaVuSans-20" transform="translate(233.691406 0.171875)"/>
<use xlink:href="#DejaVuSans-28" transform="translate(265.478516 0.171875)"/>
<use xlink:href="#DejaVuSans-65" transform="translate(304.492188 0.171875)"/>
<use xlink:href="#DejaVuSans-56" transform="translate(366.015625 0.171875)"/>
<use xlink:href="#DejaVuSans-2f" transform="translate(434.423828 0.171875)"/>
<use xlink:href="#DejaVuSans-Oblique-c5" transform="translate(468.115234 0.171875)"/>
<use xlink:href="#DejaVuSans-33" transform="translate(546.329271 38.453125)scale(0.7)"/>
<use xlink:href="#DejaVuSans-29" transform="translate(593.599779 0.171875)"/>
</g>
</g>
</g>
<g id="line2d_11">
<path d="M 121.065 279.710802
L 135.381667 279.736328
L 149.698333 279.789474
L 164.015 279.954049
L 178.331667 280.125677
L 192.648333 280.203043
L 206.965 280.226821
L 221.281667 280.766941
L 235.598333 281.202527
L 249.915 281.50954
L 264.231667 281.67
L 278.548333 281.648294
L 292.865 280.842213
L 307.181667 278.417514
L 321.498333 270.561915
L 335.815 257.908407
L 350.131667 257.356977
L 364.448333 270.084562
L 378.765 280.830372
" clip-path="url(#pfed5795703)" style="fill: none; stroke: #4c72b0; stroke-width: 1.5; stroke-linecap: round"/>
</g>
<g id="patch_3">
<path d="M 108.18 293.22
L 108.18 39.12
" style="fill: none; stroke: #262626; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
<g id="patch_4">
<path d="M 108.18 293.22
L 391.65 293.22
" style="fill: none; stroke: #262626; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
</g>
<g id="axes_2">
<g id="patch_5">
<path d="M 417.09 293.22
L 700.56 293.22
L 700.56 39.12
L 417.09 39.12
z
" style="fill: #ffffff"/>
</g>
<g id="matplotlib.axis_3">
<g id="xtick_5">
<g id="line2d_12">
<g>
<use xlink:href="#m61869f0981" x="472.925" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_13">
<!-- 0.001 -->
<g style="fill: #262626" transform="translate(449.306797 315.257422)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-31" x="222.65625"/>
</g>
</g>
</g>
<g id="xtick_6">
<g id="line2d_13">
<g>
<use xlink:href="#m61869f0981" x="530.191667" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_14">
<!-- 0.002 -->
<g style="fill: #262626" transform="translate(506.573464 315.257422)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-32" x="222.65625"/>
</g>
</g>
</g>
<g id="xtick_7">
<g id="line2d_14">
<g>
<use xlink:href="#m61869f0981" x="587.458333" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_15">
<!-- 0.003 -->
<g style="fill: #262626" transform="translate(563.84013 315.257422)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-33" x="222.65625"/>
</g>
</g>
</g>
<g id="xtick_8">
<g id="line2d_15">
<g>
<use xlink:href="#m61869f0981" x="644.725" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_16">
<!-- 0.004 -->
<g style="fill: #262626" transform="translate(621.106797 315.257422)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-34" x="222.65625"/>
</g>
</g>
</g>
<g id="text_17">
<!-- Strain -->
<g style="fill: #262626" transform="translate(532.163906 336.366094)scale(0.18 -0.18)">
<use xlink:href="#DejaVuSans-53"/>
<use xlink:href="#DejaVuSans-74" x="63.476562"/>
<use xlink:href="#DejaVuSans-72" x="102.685547"/>
<use xlink:href="#DejaVuSans-61" x="143.798828"/>
<use xlink:href="#DejaVuSans-69" x="205.078125"/>
<use xlink:href="#DejaVuSans-6e" x="232.861328"/>
</g>
</g>
</g>
<g id="matplotlib.axis_4">
<g id="ytick_7">
<g id="line2d_16">
<g>
<use xlink:href="#mfb1a04ca76" x="417.09" y="279.710802" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
<g id="ytick_8">
<g id="line2d_17">
<g>
<use xlink:href="#mfb1a04ca76" x="417.09" y="236.163685" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
<g id="ytick_9">
<g id="line2d_18">
<g>
<use xlink:href="#mfb1a04ca76" x="417.09" y="192.616568" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
<g id="ytick_10">
<g id="line2d_19">
<g>
<use xlink:href="#mfb1a04ca76" x="417.09" y="149.069451" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
<g id="ytick_11">
<g id="line2d_20">
<g>
<use xlink:href="#mfb1a04ca76" x="417.09" y="105.522335" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
<g id="ytick_12">
<g id="line2d_21">
<g>
<use xlink:href="#mfb1a04ca76" x="417.09" y="61.975218" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
</g>
<g id="line2d_22">
<path d="M 429.975 279.710802
L 444.291667 279.355137
L 458.608333 278.457485
L 472.925 275.952151
L 487.241667 272.091712
L 501.558333 268.974392
L 515.875 263.727336
L 530.191667 257.524159
L 544.508333 253.782861
L 558.825 245.692884
L 573.141667 234.174678
L 587.458333 199.724515
L 601.775 163.33964
L 616.091667 140.576458
L 630.408333 116.369265
L 644.725 57.69122
L 659.041667 50.67
L 673.358333 138.247409
L 687.675 175.385712
" clip-path="url(#pe2d3bfea14)" style="fill: none; stroke: #4c72b0; stroke-width: 1.5; stroke-linecap: round"/>
</g>
<g id="patch_6">
<path d="M 417.09 293.22
L 417.09 39.12
" style="fill: none; stroke: #262626; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
<g id="patch_7">
<path d="M 417.09 293.22
L 700.56 293.22
" style="fill: none; stroke: #262626; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
</g>
</g>
<defs>
<clipPath id="pfed5795703">
<rect x="108.18" y="39.12" width="283.47" height="254.1"/>
</clipPath>
<clipPath id="pe2d3bfea14">
<rect x="417.09" y="39.12" width="283.47" height="254.1"/>
</clipPath>
</defs>
</svg>

After

Width:  |  Height:  |  Size: 24 KiB

@ -0,0 +1,868 @@
<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="720pt" height="360pt" viewBox="0 0 720 360" xmlns="http://www.w3.org/2000/svg" version="1.1">
<metadata>
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<cc:Work>
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
<dc:date>2022-05-20T04:32:42.406740</dc:date>
<dc:format>image/svg+xml</dc:format>
<dc:creator>
<cc:Agent>
<dc:title>Matplotlib v3.5.2, https://matplotlib.org/</dc:title>
</cc:Agent>
</dc:creator>
</cc:Work>
</rdf:RDF>
</metadata>
<defs>
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
</defs>
<g id="figure_1">
<g id="patch_1">
<path d="M 0 360
L 720 360
L 720 0
L 0 0
z
" style="fill: #ffffff"/>
</g>
<g id="axes_1">
<g id="patch_2">
<path d="M 97.65 293.22
L 386.385 293.22
L 386.385 39.12
L 97.65 39.12
z
" style="fill: #ffffff"/>
</g>
<g id="matplotlib.axis_1">
<g id="xtick_1">
<g id="line2d_1">
<defs>
<path id="m5ab36ff1ca" d="M 0 0
L 0 6
" style="stroke: #262626; stroke-width: 1.25"/>
</defs>
<g>
<use xlink:href="#m5ab36ff1ca" x="207.479821" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_1">
<!-- 0.002 -->
<g style="fill: #262626" transform="translate(183.861617 315.257422)scale(0.165 -0.165)">
<defs>
<path id="DejaVuSans-30" d="M 2034 4250
Q 1547 4250 1301 3770
Q 1056 3291 1056 2328
Q 1056 1369 1301 889
Q 1547 409 2034 409
Q 2525 409 2770 889
Q 3016 1369 3016 2328
Q 3016 3291 2770 3770
Q 2525 4250 2034 4250
z
M 2034 4750
Q 2819 4750 3233 4129
Q 3647 3509 3647 2328
Q 3647 1150 3233 529
Q 2819 -91 2034 -91
Q 1250 -91 836 529
Q 422 1150 422 2328
Q 422 3509 836 4129
Q 1250 4750 2034 4750
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-2e" d="M 684 794
L 1344 794
L 1344 0
L 684 0
L 684 794
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-32" d="M 1228 531
L 3431 531
L 3431 0
L 469 0
L 469 531
Q 828 903 1448 1529
Q 2069 2156 2228 2338
Q 2531 2678 2651 2914
Q 2772 3150 2772 3378
Q 2772 3750 2511 3984
Q 2250 4219 1831 4219
Q 1534 4219 1204 4116
Q 875 4013 500 3803
L 500 4441
Q 881 4594 1212 4672
Q 1544 4750 1819 4750
Q 2544 4750 2975 4387
Q 3406 4025 3406 3419
Q 3406 3131 3298 2873
Q 3191 2616 2906 2266
Q 2828 2175 2409 1742
Q 1991 1309 1228 531
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-32" x="222.65625"/>
</g>
</g>
</g>
<g id="xtick_2">
<g id="line2d_2">
<g>
<use xlink:href="#m5ab36ff1ca" x="318.000395" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_2">
<!-- 0.004 -->
<g style="fill: #262626" transform="translate(294.382192 315.257422)scale(0.165 -0.165)">
<defs>
<path id="DejaVuSans-34" d="M 2419 4116
L 825 1625
L 2419 1625
L 2419 4116
z
M 2253 4666
L 3047 4666
L 3047 1625
L 3713 1625
L 3713 1100
L 3047 1100
L 3047 0
L 2419 0
L 2419 1100
L 313 1100
L 313 1709
L 2253 4666
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-34" x="222.65625"/>
</g>
</g>
</g>
<g id="text_3">
<!-- Strain -->
<g style="fill: #262626" transform="translate(215.356406 336.366094)scale(0.18 -0.18)">
<defs>
<path id="DejaVuSans-53" d="M 3425 4513
L 3425 3897
Q 3066 4069 2747 4153
Q 2428 4238 2131 4238
Q 1616 4238 1336 4038
Q 1056 3838 1056 3469
Q 1056 3159 1242 3001
Q 1428 2844 1947 2747
L 2328 2669
Q 3034 2534 3370 2195
Q 3706 1856 3706 1288
Q 3706 609 3251 259
Q 2797 -91 1919 -91
Q 1588 -91 1214 -16
Q 841 59 441 206
L 441 856
Q 825 641 1194 531
Q 1563 422 1919 422
Q 2459 422 2753 634
Q 3047 847 3047 1241
Q 3047 1584 2836 1778
Q 2625 1972 2144 2069
L 1759 2144
Q 1053 2284 737 2584
Q 422 2884 422 3419
Q 422 4038 858 4394
Q 1294 4750 2059 4750
Q 2388 4750 2728 4690
Q 3069 4631 3425 4513
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-74" d="M 1172 4494
L 1172 3500
L 2356 3500
L 2356 3053
L 1172 3053
L 1172 1153
Q 1172 725 1289 603
Q 1406 481 1766 481
L 2356 481
L 2356 0
L 1766 0
Q 1100 0 847 248
Q 594 497 594 1153
L 594 3053
L 172 3053
L 172 3500
L 594 3500
L 594 4494
L 1172 4494
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-72" d="M 2631 2963
Q 2534 3019 2420 3045
Q 2306 3072 2169 3072
Q 1681 3072 1420 2755
Q 1159 2438 1159 1844
L 1159 0
L 581 0
L 581 3500
L 1159 3500
L 1159 2956
Q 1341 3275 1631 3429
Q 1922 3584 2338 3584
Q 2397 3584 2469 3576
Q 2541 3569 2628 3553
L 2631 2963
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-61" d="M 2194 1759
Q 1497 1759 1228 1600
Q 959 1441 959 1056
Q 959 750 1161 570
Q 1363 391 1709 391
Q 2188 391 2477 730
Q 2766 1069 2766 1631
L 2766 1759
L 2194 1759
z
M 3341 1997
L 3341 0
L 2766 0
L 2766 531
Q 2569 213 2275 61
Q 1981 -91 1556 -91
Q 1019 -91 701 211
Q 384 513 384 1019
Q 384 1609 779 1909
Q 1175 2209 1959 2209
L 2766 2209
L 2766 2266
Q 2766 2663 2505 2880
Q 2244 3097 1772 3097
Q 1472 3097 1187 3025
Q 903 2953 641 2809
L 641 3341
Q 956 3463 1253 3523
Q 1550 3584 1831 3584
Q 2591 3584 2966 3190
Q 3341 2797 3341 1997
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-69" d="M 603 3500
L 1178 3500
L 1178 0
L 603 0
L 603 3500
z
M 603 4863
L 1178 4863
L 1178 4134
L 603 4134
L 603 4863
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-6e" d="M 3513 2113
L 3513 0
L 2938 0
L 2938 2094
Q 2938 2591 2744 2837
Q 2550 3084 2163 3084
Q 1697 3084 1428 2787
Q 1159 2491 1159 1978
L 1159 0
L 581 0
L 581 3500
L 1159 3500
L 1159 2956
Q 1366 3272 1645 3428
Q 1925 3584 2291 3584
Q 2894 3584 3203 3211
Q 3513 2838 3513 2113
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-53"/>
<use xlink:href="#DejaVuSans-74" x="63.476562"/>
<use xlink:href="#DejaVuSans-72" x="102.685547"/>
<use xlink:href="#DejaVuSans-61" x="143.798828"/>
<use xlink:href="#DejaVuSans-69" x="205.078125"/>
<use xlink:href="#DejaVuSans-6e" x="232.861328"/>
</g>
</g>
</g>
<g id="matplotlib.axis_2">
<g id="ytick_1">
<g id="line2d_3">
<defs>
<path id="m2f8edbbf94" d="M 0 0
L -6 0
" style="stroke: #262626; stroke-width: 1.25"/>
</defs>
<g>
<use xlink:href="#m2f8edbbf94" x="97.65" y="263.18699" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_4">
<!-- 0.000 -->
<g style="fill: #262626" transform="translate(40.913594 269.455701)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-30" x="222.65625"/>
</g>
</g>
</g>
<g id="ytick_2">
<g id="line2d_4">
<g>
<use xlink:href="#m2f8edbbf94" x="97.65" y="223.371433" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_5">
<!-- 0.002 -->
<g style="fill: #262626" transform="translate(40.913594 229.640144)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-32" x="222.65625"/>
</g>
</g>
</g>
<g id="ytick_3">
<g id="line2d_5">
<g>
<use xlink:href="#m2f8edbbf94" x="97.65" y="183.555876" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_6">
<!-- 0.004 -->
<g style="fill: #262626" transform="translate(40.913594 189.824587)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-34" x="222.65625"/>
</g>
</g>
</g>
<g id="ytick_4">
<g id="line2d_6">
<g>
<use xlink:href="#m2f8edbbf94" x="97.65" y="143.740319" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_7">
<!-- 0.006 -->
<g style="fill: #262626" transform="translate(40.913594 150.00903)scale(0.165 -0.165)">
<defs>
<path id="DejaVuSans-36" d="M 2113 2584
Q 1688 2584 1439 2293
Q 1191 2003 1191 1497
Q 1191 994 1439 701
Q 1688 409 2113 409
Q 2538 409 2786 701
Q 3034 994 3034 1497
Q 3034 2003 2786 2293
Q 2538 2584 2113 2584
z
M 3366 4563
L 3366 3988
Q 3128 4100 2886 4159
Q 2644 4219 2406 4219
Q 1781 4219 1451 3797
Q 1122 3375 1075 2522
Q 1259 2794 1537 2939
Q 1816 3084 2150 3084
Q 2853 3084 3261 2657
Q 3669 2231 3669 1497
Q 3669 778 3244 343
Q 2819 -91 2113 -91
Q 1303 -91 875 529
Q 447 1150 447 2328
Q 447 3434 972 4092
Q 1497 4750 2381 4750
Q 2619 4750 2861 4703
Q 3103 4656 3366 4563
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-36" x="222.65625"/>
</g>
</g>
</g>
<g id="ytick_5">
<g id="line2d_7">
<g>
<use xlink:href="#m2f8edbbf94" x="97.65" y="103.924762" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_8">
<!-- 0.008 -->
<g style="fill: #262626" transform="translate(40.913594 110.193472)scale(0.165 -0.165)">
<defs>
<path id="DejaVuSans-38" d="M 2034 2216
Q 1584 2216 1326 1975
Q 1069 1734 1069 1313
Q 1069 891 1326 650
Q 1584 409 2034 409
Q 2484 409 2743 651
Q 3003 894 3003 1313
Q 3003 1734 2745 1975
Q 2488 2216 2034 2216
z
M 1403 2484
Q 997 2584 770 2862
Q 544 3141 544 3541
Q 544 4100 942 4425
Q 1341 4750 2034 4750
Q 2731 4750 3128 4425
Q 3525 4100 3525 3541
Q 3525 3141 3298 2862
Q 3072 2584 2669 2484
Q 3125 2378 3379 2068
Q 3634 1759 3634 1313
Q 3634 634 3220 271
Q 2806 -91 2034 -91
Q 1263 -91 848 271
Q 434 634 434 1313
Q 434 1759 690 2068
Q 947 2378 1403 2484
z
M 1172 3481
Q 1172 3119 1398 2916
Q 1625 2713 2034 2713
Q 2441 2713 2670 2916
Q 2900 3119 2900 3481
Q 2900 3844 2670 4047
Q 2441 4250 2034 4250
Q 1625 4250 1398 4047
Q 1172 3844 1172 3481
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-38" x="222.65625"/>
</g>
</g>
</g>
<g id="ytick_6">
<g id="line2d_8">
<g>
<use xlink:href="#m2f8edbbf94" x="97.65" y="64.109204" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_9">
<!-- 0.010 -->
<g style="fill: #262626" transform="translate(40.913594 70.377915)scale(0.165 -0.165)">
<defs>
<path id="DejaVuSans-31" d="M 794 531
L 1825 531
L 1825 4091
L 703 3866
L 703 4441
L 1819 4666
L 2450 4666
L 2450 531
L 3481 531
L 3481 0
L 794 0
L 794 531
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-31" x="159.033203"/>
<use xlink:href="#DejaVuSans-30" x="222.65625"/>
</g>
</g>
</g>
<g id="text_10">
<!-- $\Delta E/V$ (eV/$\AA^3$) -->
<g style="fill: #262626" transform="translate(33.170156 223.14)rotate(-90)scale(0.18 -0.18)">
<defs>
<path id="DejaVuSans-394" d="M 2188 4044
L 906 525
L 3472 525
L 2188 4044
z
M 50 0
L 1831 4666
L 2547 4666
L 4325 0
L 50 0
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-Oblique-45" d="M 1081 4666
L 4031 4666
L 3928 4134
L 1606 4134
L 1338 2753
L 3566 2753
L 3463 2222
L 1234 2222
L 909 531
L 3284 531
L 3181 0
L 172 0
L 1081 4666
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-2f" d="M 1625 4666
L 2156 4666
L 531 -594
L 0 -594
L 1625 4666
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-Oblique-56" d="M 1319 0
L 500 4666
L 1119 4666
L 1797 653
L 4063 4666
L 4750 4666
L 2053 0
L 1319 0
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-20" transform="scale(0.015625)"/>
<path id="DejaVuSans-28" d="M 1984 4856
Q 1566 4138 1362 3434
Q 1159 2731 1159 2009
Q 1159 1288 1364 580
Q 1569 -128 1984 -844
L 1484 -844
Q 1016 -109 783 600
Q 550 1309 550 2009
Q 550 2706 781 3412
Q 1013 4119 1484 4856
L 1984 4856
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-65" d="M 3597 1894
L 3597 1613
L 953 1613
Q 991 1019 1311 708
Q 1631 397 2203 397
Q 2534 397 2845 478
Q 3156 559 3463 722
L 3463 178
Q 3153 47 2828 -22
Q 2503 -91 2169 -91
Q 1331 -91 842 396
Q 353 884 353 1716
Q 353 2575 817 3079
Q 1281 3584 2069 3584
Q 2775 3584 3186 3129
Q 3597 2675 3597 1894
z
M 3022 2063
Q 3016 2534 2758 2815
Q 2500 3097 2075 3097
Q 1594 3097 1305 2825
Q 1016 2553 972 2059
L 3022 2063
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-56" d="M 1831 0
L 50 4666
L 709 4666
L 2188 738
L 3669 4666
L 4325 4666
L 2547 0
L 1831 0
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-Oblique-c5" d="M 3188 5081
Q 3188 5278 3048 5417
Q 2909 5556 2713 5556
Q 2513 5556 2377 5420
Q 2241 5284 2241 5081
Q 2241 4884 2377 4746
Q 2513 4609 2713 4609
Q 2909 4609 3048 4746
Q 3188 4884 3188 5081
z
M 2203 4397
Q 2034 4513 1945 4689
Q 1856 4866 1856 5081
Q 1856 5438 2106 5689
Q 2356 5941 2713 5941
Q 3069 5941 3320 5689
Q 3572 5438 3572 5081
Q 3572 4834 3458 4643
Q 3344 4453 3128 4341
L 3938 0
L 3278 0
L 3084 1197
L 984 1197
L 325 0
L -341 0
L 2203 4397
z
M 2584 4044
L 1275 1722
L 2988 1722
L 2584 4044
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-33" d="M 2597 2516
Q 3050 2419 3304 2112
Q 3559 1806 3559 1356
Q 3559 666 3084 287
Q 2609 -91 1734 -91
Q 1441 -91 1130 -33
Q 819 25 488 141
L 488 750
Q 750 597 1062 519
Q 1375 441 1716 441
Q 2309 441 2620 675
Q 2931 909 2931 1356
Q 2931 1769 2642 2001
Q 2353 2234 1838 2234
L 1294 2234
L 1294 2753
L 1863 2753
Q 2328 2753 2575 2939
Q 2822 3125 2822 3475
Q 2822 3834 2567 4026
Q 2313 4219 1838 4219
Q 1578 4219 1281 4162
Q 984 4106 628 3988
L 628 4550
Q 988 4650 1302 4700
Q 1616 4750 1894 4750
Q 2613 4750 3031 4423
Q 3450 4097 3450 3541
Q 3450 3153 3228 2886
Q 3006 2619 2597 2516
z
" transform="scale(0.015625)"/>
<path id="DejaVuSans-29" d="M 513 4856
L 1013 4856
Q 1481 4119 1714 3412
Q 1947 2706 1947 2009
Q 1947 1309 1714 600
Q 1481 -109 1013 -844
L 513 -844
Q 928 -128 1133 580
Q 1338 1288 1338 2009
Q 1338 2731 1133 3434
Q 928 4138 513 4856
z
" transform="scale(0.015625)"/>
</defs>
<use xlink:href="#DejaVuSans-394" transform="translate(0 0.171875)"/>
<use xlink:href="#DejaVuSans-Oblique-45" transform="translate(68.408203 0.171875)"/>
<use xlink:href="#DejaVuSans-2f" transform="translate(131.591797 0.171875)"/>
<use xlink:href="#DejaVuSans-Oblique-56" transform="translate(165.283203 0.171875)"/>
<use xlink:href="#DejaVuSans-20" transform="translate(233.691406 0.171875)"/>
<use xlink:href="#DejaVuSans-28" transform="translate(265.478516 0.171875)"/>
<use xlink:href="#DejaVuSans-65" transform="translate(304.492188 0.171875)"/>
<use xlink:href="#DejaVuSans-56" transform="translate(366.015625 0.171875)"/>
<use xlink:href="#DejaVuSans-2f" transform="translate(434.423828 0.171875)"/>
<use xlink:href="#DejaVuSans-Oblique-c5" transform="translate(468.115234 0.171875)"/>
<use xlink:href="#DejaVuSans-33" transform="translate(546.329271 38.453125)scale(0.7)"/>
<use xlink:href="#DejaVuSans-29" transform="translate(593.599779 0.171875)"/>
</g>
</g>
</g>
<g id="line2d_9">
<path d="M 110.774318 263.18699
L 124.58939 263.162956
L 138.404462 263.207486
L 152.219533 263.239215
L 166.034605 263.711615
L 179.849677 263.843817
L 193.664749 263.98936
L 207.479821 264.699037
L 221.294892 266.25676
L 235.109964 266.830204
L 248.925036 267.476789
L 262.740108 268.799458
L 276.555179 269.718577
L 290.370251 264.752565
L 304.185323 255.880545
L 318.000395 240.241079
L 331.815467 248.62927
L 345.630538 268.270399
L 359.44561 277.540962
L 373.260682 281.67
" clip-path="url(#p684b76b347)" style="fill: none; stroke: #4c72b0; stroke-width: 1.5; stroke-linecap: round"/>
</g>
<g id="patch_3">
<path d="M 97.65 293.22
L 97.65 39.12
" style="fill: none; stroke: #262626; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
<g id="patch_4">
<path d="M 97.65 293.22
L 386.385 293.22
" style="fill: none; stroke: #262626; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
</g>
<g id="axes_2">
<g id="patch_5">
<path d="M 411.825 293.22
L 700.56 293.22
L 700.56 39.12
L 411.825 39.12
z
" style="fill: #ffffff"/>
</g>
<g id="matplotlib.axis_3">
<g id="xtick_3">
<g id="line2d_10">
<g>
<use xlink:href="#m5ab36ff1ca" x="521.654821" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_11">
<!-- 0.002 -->
<g style="fill: #262626" transform="translate(498.036617 315.257422)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-32" x="222.65625"/>
</g>
</g>
</g>
<g id="xtick_4">
<g id="line2d_11">
<g>
<use xlink:href="#m5ab36ff1ca" x="632.175395" y="293.22" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
<g id="text_12">
<!-- 0.004 -->
<g style="fill: #262626" transform="translate(608.557192 315.257422)scale(0.165 -0.165)">
<use xlink:href="#DejaVuSans-30"/>
<use xlink:href="#DejaVuSans-2e" x="63.623047"/>
<use xlink:href="#DejaVuSans-30" x="95.410156"/>
<use xlink:href="#DejaVuSans-30" x="159.033203"/>
<use xlink:href="#DejaVuSans-34" x="222.65625"/>
</g>
</g>
</g>
<g id="text_13">
<!-- Strain -->
<g style="fill: #262626" transform="translate(529.531406 336.366094)scale(0.18 -0.18)">
<use xlink:href="#DejaVuSans-53"/>
<use xlink:href="#DejaVuSans-74" x="63.476562"/>
<use xlink:href="#DejaVuSans-72" x="102.685547"/>
<use xlink:href="#DejaVuSans-61" x="143.798828"/>
<use xlink:href="#DejaVuSans-69" x="205.078125"/>
<use xlink:href="#DejaVuSans-6e" x="232.861328"/>
</g>
</g>
</g>
<g id="matplotlib.axis_4">
<g id="ytick_7">
<g id="line2d_12">
<g>
<use xlink:href="#m2f8edbbf94" x="411.825" y="263.18699" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
<g id="ytick_8">
<g id="line2d_13">
<g>
<use xlink:href="#m2f8edbbf94" x="411.825" y="223.371433" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
<g id="ytick_9">
<g id="line2d_14">
<g>
<use xlink:href="#m2f8edbbf94" x="411.825" y="183.555876" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
<g id="ytick_10">
<g id="line2d_15">
<g>
<use xlink:href="#m2f8edbbf94" x="411.825" y="143.740319" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
<g id="ytick_11">
<g id="line2d_16">
<g>
<use xlink:href="#m2f8edbbf94" x="411.825" y="103.924762" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
<g id="ytick_12">
<g id="line2d_17">
<g>
<use xlink:href="#m2f8edbbf94" x="411.825" y="64.109204" style="fill: #262626; stroke: #262626; stroke-width: 1.25"/>
</g>
</g>
</g>
</g>
<g id="line2d_18">
<path d="M 424.949318 263.18699
L 438.76439 263.562815
L 452.579462 262.502531
L 466.394533 261.371363
L 480.209605 257.445647
L 494.024677 254.486247
L 507.839749 254.124077
L 521.654821 249.053884
L 535.469892 247.147723
L 549.284964 246.788673
L 563.100036 243.978177
L 576.915108 236.217092
L 590.730179 231.078745
L 604.545251 230.881947
L 618.360323 119.231644
L 632.175395 58.929195
L 645.990467 50.67
L 659.805538 126.577155
L 673.62061 155.582413
L 687.435682 239.809829
" clip-path="url(#p0a9175bc72)" style="fill: none; stroke: #4c72b0; stroke-width: 1.5; stroke-linecap: round"/>
</g>
<g id="patch_6">
<path d="M 411.825 293.22
L 411.825 39.12
" style="fill: none; stroke: #262626; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
<g id="patch_7">
<path d="M 411.825 293.22
L 700.56 293.22
" style="fill: none; stroke: #262626; stroke-width: 1.25; stroke-linejoin: miter; stroke-linecap: square"/>
</g>
</g>
</g>
<defs>
<clipPath id="p684b76b347">
<rect x="97.65" y="39.12" width="288.735" height="254.1"/>
</clipPath>
<clipPath id="p0a9175bc72">
<rect x="411.825" y="39.12" width="288.735" height="254.1"/>
</clipPath>
</defs>
</svg>

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 862 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 384 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 745 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 5.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 614 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 170 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 504 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 12 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 119 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 137 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 976 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 216 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 214 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 572 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 608 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 1.1 MiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 11 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 749 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 166 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 289 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 213 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 297 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 213 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 486 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 164 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 317 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 200 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 893 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 220 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 191 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 222 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 220 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 227 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 126 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 628 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 379 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 1.3 MiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 936 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 4.8 MiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 43 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 46 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 2.0 MiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 8.8 MiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 1.6 MiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 1.6 MiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 1.5 MiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 8.1 MiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 164 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 14 MiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 30 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 5.6 MiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 22 MiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 221 KiB

Binary file not shown.

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 3.3 MiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 253 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 1.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 896 KiB

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 885 KiB

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save