#include "../../src/activation_function.hpp" #include "../../src/forward_feed.hpp" #include "../../src/matrix.hpp" #include #include #include class ForwardFeedTest : public ::testing::Test { protected: void SetUp() override { // Create simple weights for testing weights = {Matrix(2, 2, {0.5, 0.5, 0.5, 0.5}), Matrix(2, 2, {0.5, 0.5, 0.5, 0.5})}; } std::vector> weights; }; TEST_F(ForwardFeedTest, BasicForwardFeed) { // Create input data std::vector input = {1.0, 2.0}; // Create ForwardFeed with ReLU activation ForwardFeed feed(input, weights); // Verify output size EXPECT_EQ(feed.m_yhat.size(), 2); // Verify number of activations stored EXPECT_EQ(feed.m_activations.size(), 1); // Only one hidden layer // Verify input was stored as first activation EXPECT_EQ(feed.m_activations[0].rows(), 2); EXPECT_EQ(feed.m_activations[0].cols(), 1); EXPECT_FLOAT_EQ(feed.m_activations[0](0, 0), 1.0); EXPECT_FLOAT_EQ(feed.m_activations[0](1, 0), 2.0); } TEST_F(ForwardFeedTest, DifferentActivationFunctions) { // Test with different activation functions std::vector input = {1.0, 2.0}; // Test with Sigmoid ForwardFeed sigmoid_feed(input, weights); EXPECT_EQ(sigmoid_feed.m_yhat.size(), 2); // Test with ReLU ForwardFeed relu_feed(input, weights); EXPECT_EQ(relu_feed.m_yhat.size(), 2); // Test with different input values std::vector neg_input = {-1.0, -2.0}; ForwardFeed neg_feed(neg_input, weights); EXPECT_EQ(neg_feed.m_yhat.size(), 2); } TEST_F(ForwardFeedTest, ActivationStorage) { // Test that activations are properly stored std::vector input = {1.0, 2.0}; ForwardFeed feed(input, weights); // Verify first activation (input) EXPECT_EQ(feed.m_activations[0].rows(), 2); EXPECT_EQ(feed.m_activations[0].cols(), 1); EXPECT_FLOAT_EQ(feed.m_activations[0](0, 0), 1.0); EXPECT_FLOAT_EQ(feed.m_activations[0](1, 0), 2.0); // Verify final output (after softmax) EXPECT_EQ(feed.m_yhat.size(), 2); float sum = 0.0; for (float val : feed.m_yhat) { sum += val; } EXPECT_NEAR(sum, 1.0, 1e-6); // Softmax outputs should sum to 1 } TEST_F(ForwardFeedTest, EdgeCases) { // Test with zero input std::vector zero_input = {0.0, 0.0}; ForwardFeed zero_feed(zero_input, weights); EXPECT_EQ(zero_feed.m_yhat.size(), 2); // Test with negative input std::vector neg_input = {-1.0, -2.0}; ForwardFeed neg_feed(neg_input, weights); EXPECT_EQ(neg_feed.m_yhat.size(), 2); // Test with large input std::vector large_input = {100.0, 200.0}; ForwardFeed large_feed(large_input, weights); EXPECT_EQ(large_feed.m_yhat.size(), 2); } TEST_F(ForwardFeedTest, DifferentNetworkSizes) { // Test with different network architectures std::vector>> test_weights = { // Single hidden layer {Matrix(2, 2, {0.5, 0.5, 0.5, 0.5}), Matrix(2, 2, {0.5, 0.5, 0.5, 0.5})}, // Multiple hidden layers {Matrix(3, 2, {0.5, 0.5, 0.5, 0.5, 0.5, 0.5}), Matrix(2, 3, {0.5, 0.5, 0.5, 0.5, 0.5, 0.5}), Matrix(2, 2, {0.5, 0.5, 0.5, 0.5})}}; for (const auto &w : test_weights) { std::vector input(2, 1.0); ForwardFeed feed(input, w); // Verify number of activations matches number of hidden layers EXPECT_EQ(feed.m_activations.size(), w.size() - 1); // Verify final output size EXPECT_EQ(feed.m_yhat.size(), w.back().rows()); } } TEST_F(ForwardFeedTest, WeightMatrixDimensions) { // Test with invalid weight matrix dimensions std::vector input = {1.0, 2.0}; // Test with mismatched dimensions std::vector> invalid_weights = { Matrix(2, 3, {0.5, 0.5, 0.5, 0.5, 0.5, 0.5}), // 3x2 instead of 2x2 Matrix(2, 2, {0.5, 0.5, 0.5, 0.5})}; EXPECT_THROW(ForwardFeed feed(input, invalid_weights), std::invalid_argument); } int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }