#include "../src/activation_function.hpp"
#include "../src/neural_net.hpp"
#include <cmath>
#include <gtest/gtest.h>
#include <stdexcept>

class NeuralNetTest : public ::testing::Test {
protected:
  void SetUp() override {
    // Create a simple neural network with 2 input neurons, 2 hidden neurons,
    // and 2 output neurons
    std::vector<size_t> layer_sizes = {2, 2, 2};
    net = std::make_unique<NeuralNet<Sigmoid>>(layer_sizes);
  }

  std::unique_ptr<NeuralNet<Sigmoid>> net;
};

TEST_F(NeuralNetTest, FeedForward_SimpleNetwork) {
  // Test a simple network with known weights and inputs
  std::vector<float> input = {0.5f, 0.5f};

  // Set known weights for testing
  std::vector<Matrix<float>> weights = {
      Matrix<float>(2, 2, 0.5f), // First layer weights
      Matrix<float>(2, 2, 0.5f)  // Output layer weights
  };

  // Replace the network's weights with our test weights
  net->set_weights(weights);

  // Calculate expected output manually
  // First layer: Z1 = W1 * X
  Matrix<float> X(2, 1, 0.0);
  X(0, 0) = input[0];
  X(1, 0) = input[1];

  Matrix<float> Z1 = weights[0] * X;
  // Apply sigmoid activation
  Sigmoid::apply(Z1.data());

  // Second layer: Z2 = W2 * A1
  Matrix<float> Z2 = weights[1] * Z1;
  SoftMax::apply(Z2.data());

  // Convert to output vector
  std::vector<float> expected_output(Z2.cols());
  for (size_t i = 0; i < Z2.rows(); i++) {
    expected_output[i] = Z2(i, 0);
  }

  // Get actual output from feed_forward
  std::vector<float> output = net->feed_forward(input);

  // Compare actual and expected outputs
  for (size_t i = 0; i < output.size(); i++) {
    EXPECT_NEAR(output[i], expected_output[i], 1e-6);
  }
}

TEST_F(NeuralNetTest, FeedForward_DifferentLayerSizes) {
  // Create a network with different layer sizes
  std::vector<size_t> layer_sizes = {3, 4, 2};
  NeuralNet<Sigmoid> net2(layer_sizes);

  std::vector<float> input = {0.1f, 0.2f, 0.3f};
  std::vector<float> output = net2.feed_forward(input);

  // Output should have 2 elements (size of last layer)
  EXPECT_EQ(output.size(), 2);
}

TEST_F(NeuralNetTest, FeedForward_InvalidInputSize) {
  std::vector<float> input = {0.1f}; // Only 1 input, but network expects 2

  // This should throw an exception since input size doesn't match first layer
  // size
  EXPECT_THROW(net->feed_forward(input), std::invalid_argument);
}

TEST_F(NeuralNetTest, FeedForward_IdentityTest) {
  // Create a network with identity weights (1.0) and no bias
  std::vector<size_t> layer_sizes = {2, 2};
  NeuralNet<Sigmoid> net2(layer_sizes);

  // Set weights to identity matrix
  std::vector<Matrix<float>> weights = {Matrix<float>(2, 2, 1.0f)};

  net2.set_weights(weights);

  std::vector<float> input = {0.5f, 0.5f};
  std::vector<float> output = net2.feed_forward(input);

  // Since we're using sigmoid activation, the output should be
  // sigmoid(0.5 + 0.5) = sigmoid(1.0) for each neuron
  std::vector<float> expected_output = input;
  SoftMax::apply(expected_output);

  for (float val : output) {
    EXPECT_NEAR(val, expected_output[0], 1e-6);
  }
}

TEST_F(NeuralNetTest, FeedForward_SoftmaxOutput) {
  std::vector<float> input = {1.0f, -1.0f};
  std::vector<float> output = net->feed_forward(input);

  // Verify that the output sums to 1 (property of softmax)
  float sum = 0.0f;
  for (float val : output) {
    sum += val;
  }
  EXPECT_NEAR(sum, 1.0f, 1e-6);

  // Verify that all outputs are positive
  for (float val : output) {
    EXPECT_GT(val, 0.0f);
  }
}