#include "activation_function.hpp" #include "utility.hpp" #include #include // Simple identity activation function for testing struct Identity { void operator()(std::vector& x) const { // Identity function - no change to values } }; TEST(UtilityTest, FeedLayerIdentityTest) { // Test with identity activation function for simple verification // Input: [1, 2] // Weights: [0.5, -0.5, 1.0, -1.0] // Expected: [0.5, -1.0] (manually calculated) // First output: 1.0 * 0.5 + 2.0 * -0.5 = 0.5 // Second output: 1.0 * 1.0 + 2.0 * -1.0 = -1.0 std::vector weights = {0.5, -0.5, 1.0, -1.0}; std::vector input = {1.0, 2.0}; Identity identity; auto output = Utilities::feed_layer(weights.begin(), weights.end(), input, identity); ASSERT_EQ(output.size(), 2); EXPECT_NEAR(output[0], 0.5f, 1e-5); // 1.0 * 0.5 + 2.0 * -0.5 EXPECT_NEAR(output[1], -1.0f, 1e-5); // 1.0 * 1.0 + 2.0 * -1.0 } TEST(UtilityTest, FeedLayerSigmoidTest) { // Test with sigmoid activation // Input: [1] // Weights: [2, -2] std::vector weights = {2.0, -2.0}; std::vector input = {1.0}; Sigmoid sigmoid; auto output = Utilities::feed_layer(weights.begin(), weights.end(), input, sigmoid); ASSERT_EQ(output.size(), 2); // Note: Sigmoid is applied to the whole vector after matrix multiplication float expected0 = 2.0; // 1.0 * 2.0 float expected1 = -2.0; // 1.0 * -2.0 EXPECT_NEAR(output[0], 1.0 / (1.0 + std::exp(-expected0)), 1e-5); EXPECT_NEAR(output[1], 1.0 / (1.0 + std::exp(-expected1)), 1e-5); } TEST(UtilityTest, FeedLayerSoftMaxTest) { // Test with softmax activation // Input: [1] // Weights: [2, 2] std::vector weights = {2.0, 2.0}; std::vector input = {1.0}; SoftMax softmax; auto output = Utilities::feed_layer(weights.begin(), weights.end(), input, softmax); ASSERT_EQ(output.size(), 2); // Both outputs should be 0.5 since inputs to softmax are equal (both 2.0) EXPECT_NEAR(output[0], 0.5, 1e-5); EXPECT_NEAR(output[1], 0.5, 1e-5); } TEST(UtilityTest, FeedLayerEmptyInput) { std::vector weights = {1.0, 1.0}; std::vector input = {}; Identity identity; auto output = Utilities::feed_layer(weights.begin(), weights.end(), input, identity); ASSERT_EQ(output.size(), 2); EXPECT_NEAR(output[0], 0.0f, 1e-5); EXPECT_NEAR(output[1], 0.0f, 1e-5); }