You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvim_config/typings/matplotlib/hatch.pyi

116 lines
2.3 KiB

"""
This type stub file was generated by pyright.
"""
import numpy as np
from matplotlib.path import Path
from numpy.typing import ArrayLike
class HatchPatternBase:
...
class HorizontalHatch(HatchPatternBase):
num_lines: int
num_vertices: int
def __init__(self, hatch: str, density: int) -> None:
...
def set_vertices_and_codes(self, vertices: ArrayLike, codes: ArrayLike) -> None:
...
class VerticalHatch(HatchPatternBase):
num_lines: int
num_vertices: int
def __init__(self, hatch: str, density: int) -> None:
...
def set_vertices_and_codes(self, vertices: ArrayLike, codes: ArrayLike) -> None:
...
class NorthEastHatch(HatchPatternBase):
num_lines: int
num_vertices: int
def __init__(self, hatch: str, density: int) -> None:
...
def set_vertices_and_codes(self, vertices: ArrayLike, codes: ArrayLike) -> None:
...
class SouthEastHatch(HatchPatternBase):
num_lines: int
num_vertices: int
def __init__(self, hatch: str, density: int) -> None:
...
def set_vertices_and_codes(self, vertices: ArrayLike, codes: ArrayLike) -> None:
...
class Shapes(HatchPatternBase):
filled: bool
num_shapes: int
num_vertices: int
def __init__(self, hatch: str, density: int) -> None:
...
def set_vertices_and_codes(self, vertices: ArrayLike, codes: ArrayLike) -> None:
...
class Circles(Shapes):
shape_vertices: np.ndarray
shape_codes: np.ndarray
def __init__(self, hatch: str, density: int) -> None:
...
class SmallCircles(Circles):
size: float
num_rows: int
def __init__(self, hatch: str, density: int) -> None:
...
class LargeCircles(Circles):
size: float
num_rows: int
def __init__(self, hatch: str, density: int) -> None:
...
class SmallFilledCircles(Circles):
size: float
filled: bool
num_rows: int
def __init__(self, hatch: str, density: int) -> None:
...
class Stars(Shapes):
size: float
filled: bool
num_rows: int
shape_vertices: np.ndarray
shape_codes: np.ndarray
def __init__(self, hatch: str, density: int) -> None:
...
def get_path(hatchpattern: str, density: int = ...) -> Path:
...