You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvim_config/typings/matplotlib/scale.pyi

233 lines
5.1 KiB

"""
This type stub file was generated by pyright.
"""
from matplotlib.axis import Axis
from matplotlib.transforms import Transform
from collections.abc import Callable, Iterable
from typing import Literal
from numpy.typing import ArrayLike
class ScaleBase:
def __init__(self, axis: Axis | None) -> None:
...
def get_transform(self) -> Transform:
...
def set_default_locators_and_formatters(self, axis: Axis) -> None:
...
def limit_range_for_scale(self, vmin: float, vmax: float, minpos: float) -> tuple[float, float]:
...
class LinearScale(ScaleBase):
name: str
...
class FuncTransform(Transform):
input_dims: int
output_dims: int
def __init__(self, forward: Callable[[ArrayLike], ArrayLike], inverse: Callable[[ArrayLike], ArrayLike]) -> None:
...
def inverted(self) -> FuncTransform:
...
class FuncScale(ScaleBase):
name: str
def __init__(self, axis: Axis | None, functions: tuple[Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]]) -> None:
...
class LogTransform(Transform):
input_dims: int
output_dims: int
base: float
def __init__(self, base: float, nonpositive: Literal["clip", "mask"] = ...) -> None:
...
def inverted(self) -> InvertedLogTransform:
...
class InvertedLogTransform(Transform):
input_dims: int
output_dims: int
base: float
def __init__(self, base: float) -> None:
...
def inverted(self) -> LogTransform:
...
class LogScale(ScaleBase):
name: str
subs: Iterable[int] | None
def __init__(self, axis: Axis | None, *, base: float = ..., subs: Iterable[int] | None = ..., nonpositive: Literal["clip", "mask"] = ...) -> None:
...
@property
def base(self) -> float:
...
def get_transform(self) -> Transform:
...
class FuncScaleLog(LogScale):
def __init__(self, axis: Axis | None, functions: tuple[Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]], base: float = ...) -> None:
...
@property
def base(self) -> float:
...
def get_transform(self) -> Transform:
...
class SymmetricalLogTransform(Transform):
input_dims: int
output_dims: int
base: float
linthresh: float
linscale: float
def __init__(self, base: float, linthresh: float, linscale: float) -> None:
...
def inverted(self) -> InvertedSymmetricalLogTransform:
...
class InvertedSymmetricalLogTransform(Transform):
input_dims: int
output_dims: int
base: float
linthresh: float
invlinthresh: float
linscale: float
def __init__(self, base: float, linthresh: float, linscale: float) -> None:
...
def inverted(self) -> SymmetricalLogTransform:
...
class SymmetricalLogScale(ScaleBase):
name: str
subs: Iterable[int] | None
def __init__(self, axis: Axis | None, *, base: float = ..., linthresh: float = ..., subs: Iterable[int] | None = ..., linscale: float = ...) -> None:
...
@property
def base(self) -> float:
...
@property
def linthresh(self) -> float:
...
@property
def linscale(self) -> float:
...
def get_transform(self) -> SymmetricalLogTransform:
...
class AsinhTransform(Transform):
input_dims: int
output_dims: int
linear_width: float
def __init__(self, linear_width: float) -> None:
...
def inverted(self) -> InvertedAsinhTransform:
...
class InvertedAsinhTransform(Transform):
input_dims: int
output_dims: int
linear_width: float
def __init__(self, linear_width: float) -> None:
...
def inverted(self) -> AsinhTransform:
...
class AsinhScale(ScaleBase):
name: str
auto_tick_multipliers: dict[int, tuple[int, ...]]
def __init__(self, axis: Axis | None, *, linear_width: float = ..., base: float = ..., subs: Iterable[int] | Literal["auto"] | None = ..., **kwargs) -> None:
...
@property
def linear_width(self) -> float:
...
def get_transform(self) -> AsinhTransform:
...
class LogitTransform(Transform):
input_dims: int
output_dims: int
def __init__(self, nonpositive: Literal["mask", "clip"] = ...) -> None:
...
def inverted(self) -> LogisticTransform:
...
class LogisticTransform(Transform):
input_dims: int
output_dims: int
def __init__(self, nonpositive: Literal["mask", "clip"] = ...) -> None:
...
def inverted(self) -> LogitTransform:
...
class LogitScale(ScaleBase):
name: str
def __init__(self, axis: Axis | None, nonpositive: Literal["mask", "clip"] = ..., *, one_half: str = ..., use_overline: bool = ...) -> None:
...
def get_transform(self) -> LogitTransform:
...
def get_scale_names() -> list[str]:
...
def scale_factory(scale: str, axis: Axis, **kwargs) -> ScaleBase:
...
def register_scale(scale_class: type[ScaleBase]) -> None:
...