You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvim_config/typings/seaborn/widgets.pyi

166 lines
5.8 KiB

"""
This type stub file was generated by pyright.
"""
__all__ = ["choose_colorbrewer_palette", "choose_cubehelix_palette", "choose_dark_palette", "choose_light_palette", "choose_diverging_palette"]
def choose_colorbrewer_palette(data_type, as_cmap=...): # -> LinearSegmentedColormap | list[Unknown]:
"""Select a palette from the ColorBrewer set.
These palettes are built into matplotlib and can be used by name in
many seaborn functions, or by passing the object returned by this function.
Parameters
----------
data_type : {'sequential', 'diverging', 'qualitative'}
This describes the kind of data you want to visualize. See the seaborn
color palette docs for more information about how to choose this value.
Note that you can pass substrings (e.g. 'q' for 'qualitative.
as_cmap : bool
If True, the return value is a matplotlib colormap rather than a
list of discrete colors.
Returns
-------
pal or cmap : list of colors or matplotlib colormap
Object that can be passed to plotting functions.
See Also
--------
dark_palette : Create a sequential palette with dark low values.
light_palette : Create a sequential palette with bright low values.
diverging_palette : Create a diverging palette from selected colors.
cubehelix_palette : Create a sequential palette or colormap using the
cubehelix system.
"""
...
def choose_dark_palette(input=..., as_cmap=...): # -> LinearSegmentedColormap | list[Unknown]:
"""Launch an interactive widget to create a dark sequential palette.
This corresponds with the :func:`dark_palette` function. This kind
of palette is good for data that range between relatively uninteresting
low values and interesting high values.
Requires IPython 2+ and must be used in the notebook.
Parameters
----------
input : {'husl', 'hls', 'rgb'}
Color space for defining the seed value. Note that the default is
different than the default input for :func:`dark_palette`.
as_cmap : bool
If True, the return value is a matplotlib colormap rather than a
list of discrete colors.
Returns
-------
pal or cmap : list of colors or matplotlib colormap
Object that can be passed to plotting functions.
See Also
--------
dark_palette : Create a sequential palette with dark low values.
light_palette : Create a sequential palette with bright low values.
cubehelix_palette : Create a sequential palette or colormap using the
cubehelix system.
"""
...
def choose_light_palette(input=..., as_cmap=...): # -> LinearSegmentedColormap | list[Unknown]:
"""Launch an interactive widget to create a light sequential palette.
This corresponds with the :func:`light_palette` function. This kind
of palette is good for data that range between relatively uninteresting
low values and interesting high values.
Requires IPython 2+ and must be used in the notebook.
Parameters
----------
input : {'husl', 'hls', 'rgb'}
Color space for defining the seed value. Note that the default is
different than the default input for :func:`light_palette`.
as_cmap : bool
If True, the return value is a matplotlib colormap rather than a
list of discrete colors.
Returns
-------
pal or cmap : list of colors or matplotlib colormap
Object that can be passed to plotting functions.
See Also
--------
light_palette : Create a sequential palette with bright low values.
dark_palette : Create a sequential palette with dark low values.
cubehelix_palette : Create a sequential palette or colormap using the
cubehelix system.
"""
...
def choose_diverging_palette(as_cmap=...): # -> LinearSegmentedColormap | list[Unknown]:
"""Launch an interactive widget to choose a diverging color palette.
This corresponds with the :func:`diverging_palette` function. This kind
of palette is good for data that range between interesting low values
and interesting high values with a meaningful midpoint. (For example,
change scores relative to some baseline value).
Requires IPython 2+ and must be used in the notebook.
Parameters
----------
as_cmap : bool
If True, the return value is a matplotlib colormap rather than a
list of discrete colors.
Returns
-------
pal or cmap : list of colors or matplotlib colormap
Object that can be passed to plotting functions.
See Also
--------
diverging_palette : Create a diverging color palette or colormap.
choose_colorbrewer_palette : Interactively choose palettes from the
colorbrewer set, including diverging palettes.
"""
...
def choose_cubehelix_palette(as_cmap=...): # -> LinearSegmentedColormap | list[Unknown]:
"""Launch an interactive widget to create a sequential cubehelix palette.
This corresponds with the :func:`cubehelix_palette` function. This kind
of palette is good for data that range between relatively uninteresting
low values and interesting high values. The cubehelix system allows the
palette to have more hue variance across the range, which can be helpful
for distinguishing a wider range of values.
Requires IPython 2+ and must be used in the notebook.
Parameters
----------
as_cmap : bool
If True, the return value is a matplotlib colormap rather than a
list of discrete colors.
Returns
-------
pal or cmap : list of colors or matplotlib colormap
Object that can be passed to plotting functions.
See Also
--------
cubehelix_palette : Create a sequential palette or colormap using the
cubehelix system.
"""
...