You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
4.7 KiB
178 lines
4.7 KiB
1 year ago
|
"""
|
||
|
This type stub file was generated by pyright.
|
||
|
"""
|
||
|
|
||
|
import sys
|
||
|
from collections.abc import Callable, Sequence
|
||
|
from typing import Any, Concatenate, ParamSpec, Protocol, SupportsIndex, TypeVar, overload
|
||
|
from numpy import bool_, complexfloating, floating, generic, integer, object_, signedinteger, ufunc, unsignedinteger
|
||
|
from numpy._typing import ArrayLike, NDArray, _ArrayLike, _ArrayLikeBool_co, _ArrayLikeComplex_co, _ArrayLikeFloat_co, _ArrayLikeInt_co, _ArrayLikeObject_co, _ArrayLikeUInt_co, _ShapeLike
|
||
|
|
||
|
if sys.version_info >= (3, 10):
|
||
|
...
|
||
|
else:
|
||
|
...
|
||
|
_P = ParamSpec("_P")
|
||
|
_SCT = TypeVar("_SCT", bound=generic)
|
||
|
class _ArrayWrap(Protocol):
|
||
|
def __call__(self, array: NDArray[Any], context: None | tuple[ufunc, tuple[Any, ...], int] = ..., /) -> Any:
|
||
|
...
|
||
|
|
||
|
|
||
|
|
||
|
class _ArrayPrepare(Protocol):
|
||
|
def __call__(self, array: NDArray[Any], context: None | tuple[ufunc, tuple[Any, ...], int] = ..., /) -> Any:
|
||
|
...
|
||
|
|
||
|
|
||
|
|
||
|
class _SupportsArrayWrap(Protocol):
|
||
|
@property
|
||
|
def __array_wrap__(self) -> _ArrayWrap:
|
||
|
...
|
||
|
|
||
|
|
||
|
|
||
|
class _SupportsArrayPrepare(Protocol):
|
||
|
@property
|
||
|
def __array_prepare__(self) -> _ArrayPrepare:
|
||
|
...
|
||
|
|
||
|
|
||
|
|
||
|
__all__: list[str]
|
||
|
row_stack = ...
|
||
|
def take_along_axis(arr: _SCT | NDArray[_SCT], indices: NDArray[integer[Any]], axis: None | int) -> NDArray[_SCT]:
|
||
|
...
|
||
|
|
||
|
def put_along_axis(arr: NDArray[_SCT], indices: NDArray[integer[Any]], values: ArrayLike, axis: None | int) -> None:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def apply_along_axis(func1d: Callable[Concatenate[NDArray[Any], _P], _ArrayLike[_SCT]], axis: SupportsIndex, arr: ArrayLike, *args: _P.args, **kwargs: _P.kwargs) -> NDArray[_SCT]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def apply_along_axis(func1d: Callable[Concatenate[NDArray[Any], _P], ArrayLike], axis: SupportsIndex, arr: ArrayLike, *args: _P.args, **kwargs: _P.kwargs) -> NDArray[Any]:
|
||
|
...
|
||
|
|
||
|
def apply_over_axes(func: Callable[[NDArray[Any], int], NDArray[_SCT]], a: ArrayLike, axes: int | Sequence[int]) -> NDArray[_SCT]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def expand_dims(a: _ArrayLike[_SCT], axis: _ShapeLike) -> NDArray[_SCT]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def expand_dims(a: ArrayLike, axis: _ShapeLike) -> NDArray[Any]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def column_stack(tup: Sequence[_ArrayLike[_SCT]]) -> NDArray[_SCT]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def column_stack(tup: Sequence[ArrayLike]) -> NDArray[Any]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def dstack(tup: Sequence[_ArrayLike[_SCT]]) -> NDArray[_SCT]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def dstack(tup: Sequence[ArrayLike]) -> NDArray[Any]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def array_split(ary: _ArrayLike[_SCT], indices_or_sections: _ShapeLike, axis: SupportsIndex = ...) -> list[NDArray[_SCT]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def array_split(ary: ArrayLike, indices_or_sections: _ShapeLike, axis: SupportsIndex = ...) -> list[NDArray[Any]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def split(ary: _ArrayLike[_SCT], indices_or_sections: _ShapeLike, axis: SupportsIndex = ...) -> list[NDArray[_SCT]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def split(ary: ArrayLike, indices_or_sections: _ShapeLike, axis: SupportsIndex = ...) -> list[NDArray[Any]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def hsplit(ary: _ArrayLike[_SCT], indices_or_sections: _ShapeLike) -> list[NDArray[_SCT]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def hsplit(ary: ArrayLike, indices_or_sections: _ShapeLike) -> list[NDArray[Any]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def vsplit(ary: _ArrayLike[_SCT], indices_or_sections: _ShapeLike) -> list[NDArray[_SCT]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def vsplit(ary: ArrayLike, indices_or_sections: _ShapeLike) -> list[NDArray[Any]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def dsplit(ary: _ArrayLike[_SCT], indices_or_sections: _ShapeLike) -> list[NDArray[_SCT]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def dsplit(ary: ArrayLike, indices_or_sections: _ShapeLike) -> list[NDArray[Any]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def get_array_prepare(*args: _SupportsArrayPrepare) -> _ArrayPrepare:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def get_array_prepare(*args: object) -> None | _ArrayPrepare:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def get_array_wrap(*args: _SupportsArrayWrap) -> _ArrayWrap:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def get_array_wrap(*args: object) -> None | _ArrayWrap:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def kron(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co) -> NDArray[bool_]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def kron(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def kron(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def kron(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def kron(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def kron(a: _ArrayLikeObject_co, b: Any) -> NDArray[object_]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def kron(a: Any, b: _ArrayLikeObject_co) -> NDArray[object_]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def tile(A: _ArrayLike[_SCT], reps: int | Sequence[int]) -> NDArray[_SCT]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def tile(A: ArrayLike, reps: int | Sequence[int]) -> NDArray[Any]:
|
||
|
...
|
||
|
|