You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvim_config/typings/matplotlib/mlab.pyi

74 lines
3.2 KiB

"""
This type stub file was generated by pyright.
"""
import numpy as np
from collections.abc import Callable
from typing import Literal
from numpy.typing import ArrayLike
def window_hanning(x: ArrayLike) -> ArrayLike:
...
def window_none(x: ArrayLike) -> ArrayLike:
...
def detrend(x: ArrayLike, key: Literal["default", "constant", "mean", "linear", "none"] | Callable[[ArrayLike, int | None], ArrayLike] | None = ..., axis: int | None = ...) -> ArrayLike:
...
def detrend_mean(x: ArrayLike, axis: int | None = ...) -> ArrayLike:
...
def detrend_none(x: ArrayLike, axis: int | None = ...) -> ArrayLike:
...
def detrend_linear(y: ArrayLike) -> ArrayLike:
...
def psd(x: ArrayLike, NFFT: int | None = ..., Fs: float | None = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., noverlap: int | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., scale_by_freq: bool | None = ...) -> tuple[ArrayLike, ArrayLike]:
...
def csd(x: ArrayLike, y: ArrayLike | None, NFFT: int | None = ..., Fs: float | None = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., noverlap: int | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., scale_by_freq: bool | None = ...) -> tuple[ArrayLike, ArrayLike]:
...
complex_spectrum = ...
magnitude_spectrum = ...
angle_spectrum = ...
phase_spectrum = ...
def specgram(x: ArrayLike, NFFT: int | None = ..., Fs: float | None = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., noverlap: int | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., scale_by_freq: bool | None = ..., mode: Literal["psd", "complex", "magnitude", "angle", "phase"] | None = ...) -> tuple[ArrayLike, ArrayLike, ArrayLike]:
...
def cohere(x: ArrayLike, y: ArrayLike, NFFT: int = ..., Fs: float = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike = ..., noverlap: int = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] = ..., scale_by_freq: bool | None = ...) -> tuple[ArrayLike, ArrayLike]:
...
class GaussianKDE:
dataset: ArrayLike
dim: int
num_dp: int
factor: float
data_covariance: ArrayLike
data_inv_cov: ArrayLike
covariance: ArrayLike
inv_cov: ArrayLike
norm_factor: float
def __init__(self, dataset: ArrayLike, bw_method: Literal["scott", "silverman"] | float | Callable[[GaussianKDE], float] | None = ...) -> None:
...
def scotts_factor(self) -> float:
...
def silverman_factor(self) -> float:
...
def covariance_factor(self) -> float:
...
def evaluate(self, points: ArrayLike) -> np.ndarray:
...
def __call__(self, points: ArrayLike) -> np.ndarray:
...