You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

514 lines
17 KiB

"""
This type stub file was generated by pyright.
"""
import builtins
from collections.abc import Callable
from typing import Any, Literal, Union, overload
from numpy import bool_, dtype, float32, float64, int16, int32, int64, int8, int_, ndarray, uint, uint16, uint32, uint64, uint8
from numpy.random.bit_generator import BitGenerator
from numpy._typing import ArrayLike, _ArrayLikeFloat_co, _ArrayLikeInt_co, _DTypeLikeBool, _DTypeLikeInt, _DTypeLikeUInt, _DoubleCodes, _Float32Codes, _Float64Codes, _Int16Codes, _Int32Codes, _Int64Codes, _Int8Codes, _IntCodes, _ShapeLike, _SingleCodes, _SupportsDType, _UInt16Codes, _UInt32Codes, _UInt64Codes, _UInt8Codes, _UIntCodes
_DTypeLikeFloat32 = Union[dtype[float32], _SupportsDType[dtype[float32]], type[float32], _Float32Codes, _SingleCodes,]
_DTypeLikeFloat64 = Union[dtype[float64], _SupportsDType[dtype[float64]], type[float], type[float64], _Float64Codes, _DoubleCodes,]
class RandomState:
_bit_generator: BitGenerator
def __init__(self, seed: None | _ArrayLikeInt_co | BitGenerator = ...) -> None:
...
def __repr__(self) -> str:
...
def __str__(self) -> str:
...
def __getstate__(self) -> dict[str, Any]:
...
def __setstate__(self, state: dict[str, Any]) -> None:
...
def __reduce__(self) -> tuple[Callable[[str], RandomState], tuple[str], dict[str, Any]]:
...
def seed(self, seed: None | _ArrayLikeFloat_co = ...) -> None:
...
@overload
def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]:
...
@overload
def get_state(self, legacy: Literal[True] = ...) -> dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]:
...
def set_state(self, state: dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]) -> None:
...
@overload
def random_sample(self, size: None = ...) -> float:
...
@overload
def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def random(self, size: None = ...) -> float:
...
@overload
def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def beta(self, a: float, b: float, size: None = ...) -> float:
...
@overload
def beta(self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def exponential(self, scale: float = ..., size: None = ...) -> float:
...
@overload
def exponential(self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def standard_exponential(self, size: None = ...) -> float:
...
@overload
def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def tomaxint(self, size: None = ...) -> int:
...
@overload
def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def randint(self, low: int, high: None | int = ...) -> int:
...
@overload
def randint(self, low: int, high: None | int = ..., size: None = ..., dtype: _DTypeLikeBool = ...) -> bool:
...
@overload
def randint(self, low: int, high: None | int = ..., size: None = ..., dtype: _DTypeLikeInt | _DTypeLikeUInt = ...) -> int:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: _DTypeLikeBool = ...) -> ndarray[Any, dtype[bool_]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...) -> ndarray[Any, dtype[int8]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...) -> ndarray[Any, dtype[int16]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...) -> ndarray[Any, dtype[int32]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...) -> ndarray[Any, dtype[int64]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...) -> ndarray[Any, dtype[uint8]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...) -> ndarray[Any, dtype[uint16]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...) -> ndarray[Any, dtype[uint32]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...) -> ndarray[Any, dtype[uint64]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def randint(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ..., dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...) -> ndarray[Any, dtype[uint]]:
...
def bytes(self, length: int) -> builtins.bytes:
...
@overload
def choice(self, a: int, size: None = ..., replace: bool = ..., p: None | _ArrayLikeFloat_co = ...) -> int:
...
@overload
def choice(self, a: int, size: _ShapeLike = ..., replace: bool = ..., p: None | _ArrayLikeFloat_co = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def choice(self, a: ArrayLike, size: None = ..., replace: bool = ..., p: None | _ArrayLikeFloat_co = ...) -> Any:
...
@overload
def choice(self, a: ArrayLike, size: _ShapeLike = ..., replace: bool = ..., p: None | _ArrayLikeFloat_co = ...) -> ndarray[Any, Any]:
...
@overload
def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float:
...
@overload
def uniform(self, low: _ArrayLikeFloat_co = ..., high: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def rand(self) -> float:
...
@overload
def rand(self, *args: int) -> ndarray[Any, dtype[float64]]:
...
@overload
def randn(self) -> float:
...
@overload
def randn(self, *args: int) -> ndarray[Any, dtype[float64]]:
...
@overload
def random_integers(self, low: int, high: None | int = ..., size: None = ...) -> int:
...
@overload
def random_integers(self, low: _ArrayLikeInt_co, high: None | _ArrayLikeInt_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def standard_normal(self, size: None = ...) -> float:
...
@overload
def standard_normal(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float:
...
@overload
def normal(self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def standard_gamma(self, shape: float, size: None = ...) -> float:
...
@overload
def standard_gamma(self, shape: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float:
...
@overload
def gamma(self, shape: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def f(self, dfnum: float, dfden: float, size: None = ...) -> float:
...
@overload
def f(self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float:
...
@overload
def noncentral_f(self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def chisquare(self, df: float, size: None = ...) -> float:
...
@overload
def chisquare(self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float:
...
@overload
def noncentral_chisquare(self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def standard_t(self, df: float, size: None = ...) -> float:
...
@overload
def standard_t(self, df: _ArrayLikeFloat_co, size: None = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def standard_t(self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def vonmises(self, mu: float, kappa: float, size: None = ...) -> float:
...
@overload
def vonmises(self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def pareto(self, a: float, size: None = ...) -> float:
...
@overload
def pareto(self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def weibull(self, a: float, size: None = ...) -> float:
...
@overload
def weibull(self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def power(self, a: float, size: None = ...) -> float:
...
@overload
def power(self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def standard_cauchy(self, size: None = ...) -> float:
...
@overload
def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float:
...
@overload
def laplace(self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float:
...
@overload
def gumbel(self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float:
...
@overload
def logistic(self, loc: _ArrayLikeFloat_co = ..., scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float:
...
@overload
def lognormal(self, mean: _ArrayLikeFloat_co = ..., sigma: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def rayleigh(self, scale: float = ..., size: None = ...) -> float:
...
@overload
def rayleigh(self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def wald(self, mean: float, scale: float, size: None = ...) -> float:
...
@overload
def wald(self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float:
...
@overload
def triangular(self, left: _ArrayLikeFloat_co, mode: _ArrayLikeFloat_co, right: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
@overload
def binomial(self, n: int, p: float, size: None = ...) -> int:
...
@overload
def binomial(self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def negative_binomial(self, n: float, p: float, size: None = ...) -> int:
...
@overload
def negative_binomial(self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def poisson(self, lam: float = ..., size: None = ...) -> int:
...
@overload
def poisson(self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def zipf(self, a: float, size: None = ...) -> int:
...
@overload
def zipf(self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def geometric(self, p: float, size: None = ...) -> int:
...
@overload
def geometric(self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int:
...
@overload
def hypergeometric(self, ngood: _ArrayLikeInt_co, nbad: _ArrayLikeInt_co, nsample: _ArrayLikeInt_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
@overload
def logseries(self, p: float, size: None = ...) -> int:
...
@overload
def logseries(self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
def multivariate_normal(self, mean: _ArrayLikeFloat_co, cov: _ArrayLikeFloat_co, size: None | _ShapeLike = ..., check_valid: Literal["warn", "raise", "ignore"] = ..., tol: float = ...) -> ndarray[Any, dtype[float64]]:
...
def multinomial(self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[int_]]:
...
def dirichlet(self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...) -> ndarray[Any, dtype[float64]]:
...
def shuffle(self, x: ArrayLike) -> None:
...
@overload
def permutation(self, x: int) -> ndarray[Any, dtype[int_]]:
...
@overload
def permutation(self, x: ArrayLike) -> ndarray[Any, Any]:
...
_rand: RandomState
beta = ...
binomial = ...
bytes = ...
chisquare = ...
choice = ...
dirichlet = ...
exponential = ...
f = ...
gamma = ...
get_state = ...
geometric = ...
gumbel = ...
hypergeometric = ...
laplace = ...
logistic = ...
lognormal = ...
logseries = ...
multinomial = ...
multivariate_normal = ...
negative_binomial = ...
noncentral_chisquare = ...
noncentral_f = ...
normal = ...
pareto = ...
permutation = ...
poisson = ...
power = ...
rand = ...
randint = ...
randn = ...
random = ...
random_integers = ...
random_sample = ...
rayleigh = ...
seed = ...
set_state = ...
shuffle = ...
standard_cauchy = ...
standard_exponential = ...
standard_gamma = ...
standard_normal = ...
standard_t = ...
triangular = ...
uniform = ...
vonmises = ...
wald = ...
weibull = ...
zipf = ...
sample = ...
ranf = ...
def set_bit_generator(bitgen: BitGenerator) -> None:
...
def get_bit_generator() -> BitGenerator:
...