You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

259 lines
20 KiB

"""
This type stub file was generated by pyright.
"""
import datetime
import PIL.Image
import numpy as np
from matplotlib.axes._base import _AxesBase
from matplotlib.axes._secondary_axes import SecondaryAxis
from matplotlib.artist import Artist
from matplotlib.backend_bases import RendererBase
from matplotlib.collections import BrokenBarHCollection, Collection, EventCollection, LineCollection, PathCollection, PolyCollection, QuadMesh
from matplotlib.colors import Colormap, Normalize
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
from matplotlib.contour import ContourSet, QuadContourSet
from matplotlib.image import AxesImage, PcolorImage
from matplotlib.legend import Legend
from matplotlib.legend_handler import HandlerBase
from matplotlib.lines import Line2D
from matplotlib.mlab import GaussianKDE
from matplotlib.patches import FancyArrow, Polygon, Rectangle, StepPatch, Wedge
from matplotlib.quiver import Barbs, Quiver, QuiverKey
from matplotlib.text import Annotation, Text
from matplotlib.transforms import Bbox, Transform
from collections.abc import Callable, Sequence
from typing import Any, Literal, overload
from numpy.typing import ArrayLike
from matplotlib.typing import ColorType, LineStyleType, MarkerType
class Axes(_AxesBase):
def get_title(self, loc: Literal["left", "center", "right"] = ...) -> str:
...
def set_title(self, label: str, fontdict: dict[str, Any] | None = ..., loc: Literal["left", "center", "right"] | None = ..., pad: float | None = ..., *, y: float | None = ..., **kwargs) -> Text:
...
def get_legend_handles_labels(self, legend_handler_map: dict[type, HandlerBase] | None = ...) -> tuple[list[Artist], list[Any]]:
...
legend_: Legend | None
@overload
def legend(self) -> Legend:
...
@overload
def legend(self, handles: Sequence[Artist | tuple[Artist, ...]], labels: Sequence[str], **kwargs) -> Legend:
...
@overload
def legend(self, *, handles: Sequence[Artist | tuple[Artist, ...]], **kwargs) -> Legend:
...
@overload
def legend(self, labels: Sequence[str], **kwargs) -> Legend:
...
@overload
def legend(self, **kwargs) -> Legend:
...
def inset_axes(self, bounds: tuple[float, float, float, float], *, transform: Transform | None = ..., zorder: float = ..., **kwargs) -> Axes:
...
def indicate_inset(self, bounds: tuple[float, float, float, float], inset_ax: Axes | None = ..., *, transform: Transform | None = ..., facecolor: ColorType = ..., edgecolor: ColorType = ..., alpha: float = ..., zorder: float = ..., **kwargs) -> Rectangle:
...
def indicate_inset_zoom(self, inset_ax: Axes, **kwargs) -> Rectangle:
...
def secondary_xaxis(self, location: Literal["top", "bottom"] | float, *, functions: tuple[Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]] | Transform | None = ..., **kwargs) -> SecondaryAxis:
...
def secondary_yaxis(self, location: Literal["left", "right"] | float, *, functions: tuple[Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]] | Transform | None = ..., **kwargs) -> SecondaryAxis:
...
def text(self, x: float, y: float, s: str, fontdict: dict[str, Any] | None = ..., **kwargs) -> Text:
...
def annotate(self, text: str, xy: tuple[float, float], xytext: tuple[float, float] | None = ..., xycoords: str | Artist | Transform | Callable[[RendererBase], Bbox | Transform] | tuple[float, float] = ..., textcoords: str | Artist | Transform | Callable[[RendererBase], Bbox | Transform] | tuple[float, float] | None = ..., arrowprops: dict[str, Any] | None = ..., annotation_clip: bool | None = ..., **kwargs) -> Annotation:
...
def axhline(self, y: float = ..., xmin: float = ..., xmax: float = ..., **kwargs) -> Line2D:
...
def axvline(self, x: float = ..., ymin: float = ..., ymax: float = ..., **kwargs) -> Line2D:
...
def axline(self, xy1: tuple[float, float], xy2: tuple[float, float] | None = ..., *, slope: float | None = ..., **kwargs) -> Line2D:
...
def axhspan(self, ymin: float, ymax: float, xmin: float = ..., xmax: float = ..., **kwargs) -> Polygon:
...
def axvspan(self, xmin: float, xmax: float, ymin: float = ..., ymax: float = ..., **kwargs) -> Polygon:
...
def hlines(self, y: float | ArrayLike, xmin: float | ArrayLike, xmax: float | ArrayLike, colors: ColorType | Sequence[ColorType] | None = ..., linestyles: LineStyleType = ..., label: str = ..., *, data=..., **kwargs) -> LineCollection:
...
def vlines(self, x: float | ArrayLike, ymin: float | ArrayLike, ymax: float | ArrayLike, colors: ColorType | Sequence[ColorType] | None = ..., linestyles: LineStyleType = ..., label: str = ..., *, data=..., **kwargs) -> LineCollection:
...
def eventplot(self, positions: ArrayLike | Sequence[ArrayLike], orientation: Literal["horizontal", "vertical"] = ..., lineoffsets: float | Sequence[float] = ..., linelengths: float | Sequence[float] = ..., linewidths: float | Sequence[float] | None = ..., colors: ColorType | Sequence[ColorType] | None = ..., alpha: float | Sequence[float] | None = ..., linestyles: LineStyleType | Sequence[LineStyleType] = ..., *, data=..., **kwargs) -> EventCollection:
...
def plot(self, *args: float | ArrayLike | str, scalex: bool = ..., scaley: bool = ..., data=..., **kwargs) -> list[Line2D]:
...
def plot_date(self, x: ArrayLike, y: ArrayLike, fmt: str = ..., tz: str | datetime.tzinfo | None = ..., xdate: bool = ..., ydate: bool = ..., *, data=..., **kwargs) -> list[Line2D]:
...
def loglog(self, *args, **kwargs) -> list[Line2D]:
...
def semilogx(self, *args, **kwargs) -> list[Line2D]:
...
def semilogy(self, *args, **kwargs) -> list[Line2D]:
...
def acorr(self, x: ArrayLike, *, data=..., **kwargs) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]:
...
def xcorr(self, x: ArrayLike, y: ArrayLike, normed: bool = ..., detrend: Callable[[ArrayLike], ArrayLike] = ..., usevlines: bool = ..., maxlags: int = ..., *, data=..., **kwargs) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]:
...
def step(self, x: ArrayLike, y: ArrayLike, *args, where: Literal["pre", "post", "mid"] = ..., data=..., **kwargs) -> list[Line2D]:
...
def bar(self, x: float | ArrayLike, height: float | ArrayLike, width: float | ArrayLike = ..., bottom: float | ArrayLike | None = ..., *, align: Literal["center", "edge"] = ..., data=..., **kwargs) -> BarContainer:
...
def barh(self, y: float | ArrayLike, width: float | ArrayLike, height: float | ArrayLike = ..., left: float | ArrayLike | None = ..., *, align: Literal["center", "edge"] = ..., data=..., **kwargs) -> BarContainer:
...
def bar_label(self, container: BarContainer, labels: ArrayLike | None = ..., *, fmt: str | Callable[[float], str] = ..., label_type: Literal["center", "edge"] = ..., padding: float = ..., **kwargs) -> list[Annotation]:
...
def broken_barh(self, xranges: Sequence[tuple[float, float]], yrange: tuple[float, float], *, data=..., **kwargs) -> BrokenBarHCollection:
...
def stem(self, *args: ArrayLike | str, linefmt: str | None = ..., markerfmt: str | None = ..., basefmt: str | None = ..., bottom: float = ..., label: str | None = ..., orientation: Literal["vertical", "horizontal"] = ..., data=...) -> StemContainer:
...
def pie(self, x: ArrayLike, explode: ArrayLike | None = ..., labels: Sequence[str] | None = ..., colors: ColorType | Sequence[ColorType] | None = ..., autopct: str | Callable[[float], str] | None = ..., pctdistance: float = ..., shadow: bool = ..., labeldistance: float | None = ..., startangle: float = ..., radius: float = ..., counterclock: bool = ..., wedgeprops: dict[str, Any] | None = ..., textprops: dict[str, Any] | None = ..., center: tuple[float, float] = ..., frame: bool = ..., rotatelabels: bool = ..., *, normalize: bool = ..., hatch: str | Sequence[str] | None = ..., data=...) -> tuple[list[Wedge], list[Text]] | tuple[list[Wedge], list[Text], list[Text]]:
...
def errorbar(self, x: float | ArrayLike, y: float | ArrayLike, yerr: float | ArrayLike | None = ..., xerr: float | ArrayLike | None = ..., fmt: str = ..., ecolor: ColorType | None = ..., elinewidth: float | None = ..., capsize: float | None = ..., barsabove: bool = ..., lolims: bool | ArrayLike = ..., uplims: bool | ArrayLike = ..., xlolims: bool | ArrayLike = ..., xuplims: bool | ArrayLike = ..., errorevery: int | tuple[int, int] = ..., capthick: float | None = ..., *, data=..., **kwargs) -> ErrorbarContainer:
...
def boxplot(self, x: ArrayLike | Sequence[ArrayLike], notch: bool | None = ..., sym: str | None = ..., vert: bool | None = ..., whis: float | tuple[float, float] | None = ..., positions: ArrayLike | None = ..., widths: float | ArrayLike | None = ..., patch_artist: bool | None = ..., bootstrap: int | None = ..., usermedians: ArrayLike | None = ..., conf_intervals: ArrayLike | None = ..., meanline: bool | None = ..., showmeans: bool | None = ..., showcaps: bool | None = ..., showbox: bool | None = ..., showfliers: bool | None = ..., boxprops: dict[str, Any] | None = ..., labels: Sequence[str] | None = ..., flierprops: dict[str, Any] | None = ..., medianprops: dict[str, Any] | None = ..., meanprops: dict[str, Any] | None = ..., capprops: dict[str, Any] | None = ..., whiskerprops: dict[str, Any] | None = ..., manage_ticks: bool = ..., autorange: bool = ..., zorder: float | None = ..., capwidths: float | ArrayLike | None = ..., *, data=...) -> dict[str, Any]:
...
def bxp(self, bxpstats: Sequence[dict[str, Any]], positions: ArrayLike | None = ..., widths: float | ArrayLike | None = ..., vert: bool = ..., patch_artist: bool = ..., shownotches: bool = ..., showmeans: bool = ..., showcaps: bool = ..., showbox: bool = ..., showfliers: bool = ..., boxprops: dict[str, Any] | None = ..., whiskerprops: dict[str, Any] | None = ..., flierprops: dict[str, Any] | None = ..., medianprops: dict[str, Any] | None = ..., capprops: dict[str, Any] | None = ..., meanprops: dict[str, Any] | None = ..., meanline: bool = ..., manage_ticks: bool = ..., zorder: float | None = ..., capwidths: float | ArrayLike | None = ...) -> dict[str, Any]:
...
def scatter(self, x: float | ArrayLike, y: float | ArrayLike, s: float | ArrayLike | None = ..., c: Sequence[ColorType] | ColorType | None = ..., marker: MarkerType | None = ..., cmap: str | Colormap | None = ..., norm: str | Normalize | None = ..., vmin: float | None = ..., vmax: float | None = ..., alpha: float | None = ..., linewidths: float | Sequence[float] | None = ..., *, edgecolors: Literal["face", "none"] | ColorType | Sequence[ColorType] | None = ..., plotnonfinite: bool = ..., data=..., **kwargs) -> PathCollection:
...
def hexbin(self, x: ArrayLike, y: ArrayLike, C: ArrayLike | None = ..., gridsize: int | tuple[int, int] = ..., bins: Literal["log"] | int | Sequence[float] | None = ..., xscale: Literal["linear", "log"] = ..., yscale: Literal["linear", "log"] = ..., extent: tuple[float, float, float, float] | None = ..., cmap: str | Colormap | None = ..., norm: str | Normalize | None = ..., vmin: float | None = ..., vmax: float | None = ..., alpha: float | None = ..., linewidths: float | None = ..., edgecolors: Literal["face", "none"] | ColorType = ..., reduce_C_function: Callable[[np.ndarray | list[float]], float] = ..., mincnt: int | None = ..., marginals: bool = ..., *, data=..., **kwargs) -> PolyCollection:
...
def arrow(self, x: float, y: float, dx: float, dy: float, **kwargs) -> FancyArrow:
...
def quiverkey(self, Q: Quiver, X: float, Y: float, U: float, label: str, **kwargs) -> QuiverKey:
...
def quiver(self, *args, data=..., **kwargs) -> Quiver:
...
def barbs(self, *args, data=..., **kwargs) -> Barbs:
...
def fill(self, *args, data=..., **kwargs) -> list[Polygon]:
...
def fill_between(self, x: ArrayLike, y1: ArrayLike | float, y2: ArrayLike | float = ..., where: Sequence[bool] | None = ..., interpolate: bool = ..., step: Literal["pre", "post", "mid"] | None = ..., *, data=..., **kwargs) -> PolyCollection:
...
def fill_betweenx(self, y: ArrayLike, x1: ArrayLike | float, x2: ArrayLike | float = ..., where: Sequence[bool] | None = ..., step: Literal["pre", "post", "mid"] | None = ..., interpolate: bool = ..., *, data=..., **kwargs) -> PolyCollection:
...
def imshow(self, X: ArrayLike | PIL.Image.Image, cmap: str | Colormap | None = ..., norm: str | Normalize | None = ..., *, aspect: Literal["equal", "auto"] | float | None = ..., interpolation: str | None = ..., alpha: float | ArrayLike | None = ..., vmin: float | None = ..., vmax: float | None = ..., origin: Literal["upper", "lower"] | None = ..., extent: tuple[float, float, float, float] | None = ..., interpolation_stage: Literal["data", "rgba"] | None = ..., filternorm: bool = ..., filterrad: float = ..., resample: bool | None = ..., url: str | None = ..., data=..., **kwargs) -> AxesImage:
...
def pcolor(self, *args: ArrayLike, shading: Literal["flat", "nearest", "auto"] | None = ..., alpha: float | None = ..., norm: str | Normalize | None = ..., cmap: str | Colormap | None = ..., vmin: float | None = ..., vmax: float | None = ..., data=..., **kwargs) -> Collection:
...
def pcolormesh(self, *args: ArrayLike, alpha: float | None = ..., norm: str | Normalize | None = ..., cmap: str | Colormap | None = ..., vmin: float | None = ..., vmax: float | None = ..., shading: Literal["flat", "nearest", "gouraud", "auto"] | None = ..., antialiased: bool = ..., data=..., **kwargs) -> QuadMesh:
...
def pcolorfast(self, *args: ArrayLike | tuple[float, float], alpha: float | None = ..., norm: str | Normalize | None = ..., cmap: str | Colormap | None = ..., vmin: float | None = ..., vmax: float | None = ..., data=..., **kwargs) -> AxesImage | PcolorImage | QuadMesh:
...
def contour(self, *args, data=..., **kwargs) -> QuadContourSet:
...
def contourf(self, *args, data=..., **kwargs) -> QuadContourSet:
...
def clabel(self, CS: ContourSet, levels: ArrayLike | None = ..., **kwargs) -> list[Text]:
...
def hist(self, x: ArrayLike | Sequence[ArrayLike], bins: int | Sequence[float] | str | None = ..., range: tuple[float, float] | None = ..., density: bool = ..., weights: ArrayLike | None = ..., cumulative: bool | float = ..., bottom: ArrayLike | float | None = ..., histtype: Literal["bar", "barstacked", "step", "stepfilled"] = ..., align: Literal["left", "mid", "right"] = ..., orientation: Literal["vertical", "horizontal"] = ..., rwidth: float | None = ..., log: bool = ..., color: ColorType | Sequence[ColorType] | None = ..., label: str | Sequence[str] | None = ..., stacked: bool = ..., *, data=..., **kwargs) -> tuple[np.ndarray | list[np.ndarray], np.ndarray, BarContainer | Polygon | list[BarContainer | Polygon],]:
...
def stairs(self, values: ArrayLike, edges: ArrayLike | None = ..., *, orientation: Literal["vertical", "horizontal"] = ..., baseline: float | ArrayLike | None = ..., fill: bool = ..., data=..., **kwargs) -> StepPatch:
...
def hist2d(self, x: ArrayLike, y: ArrayLike, bins: None | int | tuple[int, int] | ArrayLike | tuple[ArrayLike, ArrayLike] = ..., range: ArrayLike | None = ..., density: bool = ..., weights: ArrayLike | None = ..., cmin: float | None = ..., cmax: float | None = ..., *, data=..., **kwargs) -> tuple[np.ndarray, np.ndarray, np.ndarray, QuadMesh]:
...
def ecdf(self, x: ArrayLike, weights: ArrayLike | None = ..., *, complementary: bool = ..., orientation: Literal["vertical", "horizonatal"] = ..., compress: bool = ..., data=..., **kwargs) -> Line2D:
...
def psd(self, x: ArrayLike, NFFT: int | None = ..., Fs: float | None = ..., Fc: int | None = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike], ArrayLike] | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., noverlap: int | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., scale_by_freq: bool | None = ..., return_line: bool | None = ..., *, data=..., **kwargs) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]:
...
def csd(self, x: ArrayLike, y: ArrayLike, NFFT: int | None = ..., Fs: float | None = ..., Fc: int | None = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike], ArrayLike] | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., noverlap: int | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., scale_by_freq: bool | None = ..., return_line: bool | None = ..., *, data=..., **kwargs) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]:
...
def magnitude_spectrum(self, x: ArrayLike, Fs: float | None = ..., Fc: int | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., scale: Literal["default", "linear", "dB"] | None = ..., *, data=..., **kwargs) -> tuple[np.ndarray, np.ndarray, Line2D]:
...
def angle_spectrum(self, x: ArrayLike, Fs: float | None = ..., Fc: int | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., *, data=..., **kwargs) -> tuple[np.ndarray, np.ndarray, Line2D]:
...
def phase_spectrum(self, x: ArrayLike, Fs: float | None = ..., Fc: int | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., *, data=..., **kwargs) -> tuple[np.ndarray, np.ndarray, Line2D]:
...
def cohere(self, x: ArrayLike, y: ArrayLike, NFFT: int = ..., Fs: float = ..., Fc: int = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike], ArrayLike] = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike = ..., noverlap: int = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] = ..., scale_by_freq: bool | None = ..., *, data=..., **kwargs) -> tuple[np.ndarray, np.ndarray]:
...
def specgram(self, x: ArrayLike, NFFT: int | None = ..., Fs: float | None = ..., Fc: int | None = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike], ArrayLike] | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., noverlap: int | None = ..., cmap: str | Colormap | None = ..., xextent: tuple[float, float] | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., scale_by_freq: bool | None = ..., mode: Literal["default", "psd", "magnitude", "angle", "phase"] | None = ..., scale: Literal["default", "linear", "dB"] | None = ..., vmin: float | None = ..., vmax: float | None = ..., *, data=..., **kwargs) -> tuple[np.ndarray, np.ndarray, np.ndarray, AxesImage]:
...
def spy(self, Z: ArrayLike, precision: float | Literal["present"] = ..., marker: str | None = ..., markersize: float | None = ..., aspect: Literal["equal", "auto"] | float | None = ..., origin: Literal["upper", "lower"] = ..., **kwargs) -> AxesImage:
...
def matshow(self, Z: ArrayLike, **kwargs) -> AxesImage:
...
def violinplot(self, dataset: ArrayLike | Sequence[ArrayLike], positions: ArrayLike | None = ..., vert: bool = ..., widths: float | ArrayLike = ..., showmeans: bool = ..., showextrema: bool = ..., showmedians: bool = ..., quantiles: Sequence[float | Sequence[float]] | None = ..., points: int = ..., bw_method: Literal["scott", "silverman"] | float | Callable[[GaussianKDE], float] | None = ..., *, data=...) -> dict[str, Collection]:
...
def violin(self, vpstats: Sequence[dict[str, Any]], positions: ArrayLike | None = ..., vert: bool = ..., widths: float | ArrayLike = ..., showmeans: bool = ..., showextrema: bool = ..., showmedians: bool = ...) -> dict[str, Collection]:
...
table = ...
stackplot = ...
streamplot = ...
tricontour = ...
tricontourf = ...
tripcolor = ...
triplot = ...