You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
74 lines
3.2 KiB
74 lines
3.2 KiB
"""
|
|
This type stub file was generated by pyright.
|
|
"""
|
|
|
|
import numpy as np
|
|
from collections.abc import Callable
|
|
from typing import Literal
|
|
from numpy.typing import ArrayLike
|
|
|
|
def window_hanning(x: ArrayLike) -> ArrayLike:
|
|
...
|
|
|
|
def window_none(x: ArrayLike) -> ArrayLike:
|
|
...
|
|
|
|
def detrend(x: ArrayLike, key: Literal["default", "constant", "mean", "linear", "none"] | Callable[[ArrayLike, int | None], ArrayLike] | None = ..., axis: int | None = ...) -> ArrayLike:
|
|
...
|
|
|
|
def detrend_mean(x: ArrayLike, axis: int | None = ...) -> ArrayLike:
|
|
...
|
|
|
|
def detrend_none(x: ArrayLike, axis: int | None = ...) -> ArrayLike:
|
|
...
|
|
|
|
def detrend_linear(y: ArrayLike) -> ArrayLike:
|
|
...
|
|
|
|
def psd(x: ArrayLike, NFFT: int | None = ..., Fs: float | None = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., noverlap: int | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., scale_by_freq: bool | None = ...) -> tuple[ArrayLike, ArrayLike]:
|
|
...
|
|
|
|
def csd(x: ArrayLike, y: ArrayLike | None, NFFT: int | None = ..., Fs: float | None = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., noverlap: int | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., scale_by_freq: bool | None = ...) -> tuple[ArrayLike, ArrayLike]:
|
|
...
|
|
|
|
complex_spectrum = ...
|
|
magnitude_spectrum = ...
|
|
angle_spectrum = ...
|
|
phase_spectrum = ...
|
|
def specgram(x: ArrayLike, NFFT: int | None = ..., Fs: float | None = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] | None = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., noverlap: int | None = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] | None = ..., scale_by_freq: bool | None = ..., mode: Literal["psd", "complex", "magnitude", "angle", "phase"] | None = ...) -> tuple[ArrayLike, ArrayLike, ArrayLike]:
|
|
...
|
|
|
|
def cohere(x: ArrayLike, y: ArrayLike, NFFT: int = ..., Fs: float = ..., detrend: Literal["none", "mean", "linear"] | Callable[[ArrayLike, int | None], ArrayLike] = ..., window: Callable[[ArrayLike], ArrayLike] | ArrayLike = ..., noverlap: int = ..., pad_to: int | None = ..., sides: Literal["default", "onesided", "twosided"] = ..., scale_by_freq: bool | None = ...) -> tuple[ArrayLike, ArrayLike]:
|
|
...
|
|
|
|
class GaussianKDE:
|
|
dataset: ArrayLike
|
|
dim: int
|
|
num_dp: int
|
|
factor: float
|
|
data_covariance: ArrayLike
|
|
data_inv_cov: ArrayLike
|
|
covariance: ArrayLike
|
|
inv_cov: ArrayLike
|
|
norm_factor: float
|
|
def __init__(self, dataset: ArrayLike, bw_method: Literal["scott", "silverman"] | float | Callable[[GaussianKDE], float] | None = ...) -> None:
|
|
...
|
|
|
|
def scotts_factor(self) -> float:
|
|
...
|
|
|
|
def silverman_factor(self) -> float:
|
|
...
|
|
|
|
def covariance_factor(self) -> float:
|
|
...
|
|
|
|
def evaluate(self, points: ArrayLike) -> np.ndarray:
|
|
...
|
|
|
|
def __call__(self, points: ArrayLike) -> np.ndarray:
|
|
...
|
|
|
|
|
|
|