You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
233 lines
5.1 KiB
233 lines
5.1 KiB
"""
|
|
This type stub file was generated by pyright.
|
|
"""
|
|
|
|
from matplotlib.axis import Axis
|
|
from matplotlib.transforms import Transform
|
|
from collections.abc import Callable, Iterable
|
|
from typing import Literal
|
|
from numpy.typing import ArrayLike
|
|
|
|
class ScaleBase:
|
|
def __init__(self, axis: Axis | None) -> None:
|
|
...
|
|
|
|
def get_transform(self) -> Transform:
|
|
...
|
|
|
|
def set_default_locators_and_formatters(self, axis: Axis) -> None:
|
|
...
|
|
|
|
def limit_range_for_scale(self, vmin: float, vmax: float, minpos: float) -> tuple[float, float]:
|
|
...
|
|
|
|
|
|
|
|
class LinearScale(ScaleBase):
|
|
name: str
|
|
...
|
|
|
|
|
|
class FuncTransform(Transform):
|
|
input_dims: int
|
|
output_dims: int
|
|
def __init__(self, forward: Callable[[ArrayLike], ArrayLike], inverse: Callable[[ArrayLike], ArrayLike]) -> None:
|
|
...
|
|
|
|
def inverted(self) -> FuncTransform:
|
|
...
|
|
|
|
|
|
|
|
class FuncScale(ScaleBase):
|
|
name: str
|
|
def __init__(self, axis: Axis | None, functions: tuple[Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]]) -> None:
|
|
...
|
|
|
|
|
|
|
|
class LogTransform(Transform):
|
|
input_dims: int
|
|
output_dims: int
|
|
base: float
|
|
def __init__(self, base: float, nonpositive: Literal["clip", "mask"] = ...) -> None:
|
|
...
|
|
|
|
def inverted(self) -> InvertedLogTransform:
|
|
...
|
|
|
|
|
|
|
|
class InvertedLogTransform(Transform):
|
|
input_dims: int
|
|
output_dims: int
|
|
base: float
|
|
def __init__(self, base: float) -> None:
|
|
...
|
|
|
|
def inverted(self) -> LogTransform:
|
|
...
|
|
|
|
|
|
|
|
class LogScale(ScaleBase):
|
|
name: str
|
|
subs: Iterable[int] | None
|
|
def __init__(self, axis: Axis | None, *, base: float = ..., subs: Iterable[int] | None = ..., nonpositive: Literal["clip", "mask"] = ...) -> None:
|
|
...
|
|
|
|
@property
|
|
def base(self) -> float:
|
|
...
|
|
|
|
def get_transform(self) -> Transform:
|
|
...
|
|
|
|
|
|
|
|
class FuncScaleLog(LogScale):
|
|
def __init__(self, axis: Axis | None, functions: tuple[Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike]], base: float = ...) -> None:
|
|
...
|
|
|
|
@property
|
|
def base(self) -> float:
|
|
...
|
|
|
|
def get_transform(self) -> Transform:
|
|
...
|
|
|
|
|
|
|
|
class SymmetricalLogTransform(Transform):
|
|
input_dims: int
|
|
output_dims: int
|
|
base: float
|
|
linthresh: float
|
|
linscale: float
|
|
def __init__(self, base: float, linthresh: float, linscale: float) -> None:
|
|
...
|
|
|
|
def inverted(self) -> InvertedSymmetricalLogTransform:
|
|
...
|
|
|
|
|
|
|
|
class InvertedSymmetricalLogTransform(Transform):
|
|
input_dims: int
|
|
output_dims: int
|
|
base: float
|
|
linthresh: float
|
|
invlinthresh: float
|
|
linscale: float
|
|
def __init__(self, base: float, linthresh: float, linscale: float) -> None:
|
|
...
|
|
|
|
def inverted(self) -> SymmetricalLogTransform:
|
|
...
|
|
|
|
|
|
|
|
class SymmetricalLogScale(ScaleBase):
|
|
name: str
|
|
subs: Iterable[int] | None
|
|
def __init__(self, axis: Axis | None, *, base: float = ..., linthresh: float = ..., subs: Iterable[int] | None = ..., linscale: float = ...) -> None:
|
|
...
|
|
|
|
@property
|
|
def base(self) -> float:
|
|
...
|
|
|
|
@property
|
|
def linthresh(self) -> float:
|
|
...
|
|
|
|
@property
|
|
def linscale(self) -> float:
|
|
...
|
|
|
|
def get_transform(self) -> SymmetricalLogTransform:
|
|
...
|
|
|
|
|
|
|
|
class AsinhTransform(Transform):
|
|
input_dims: int
|
|
output_dims: int
|
|
linear_width: float
|
|
def __init__(self, linear_width: float) -> None:
|
|
...
|
|
|
|
def inverted(self) -> InvertedAsinhTransform:
|
|
...
|
|
|
|
|
|
|
|
class InvertedAsinhTransform(Transform):
|
|
input_dims: int
|
|
output_dims: int
|
|
linear_width: float
|
|
def __init__(self, linear_width: float) -> None:
|
|
...
|
|
|
|
def inverted(self) -> AsinhTransform:
|
|
...
|
|
|
|
|
|
|
|
class AsinhScale(ScaleBase):
|
|
name: str
|
|
auto_tick_multipliers: dict[int, tuple[int, ...]]
|
|
def __init__(self, axis: Axis | None, *, linear_width: float = ..., base: float = ..., subs: Iterable[int] | Literal["auto"] | None = ..., **kwargs) -> None:
|
|
...
|
|
|
|
@property
|
|
def linear_width(self) -> float:
|
|
...
|
|
|
|
def get_transform(self) -> AsinhTransform:
|
|
...
|
|
|
|
|
|
|
|
class LogitTransform(Transform):
|
|
input_dims: int
|
|
output_dims: int
|
|
def __init__(self, nonpositive: Literal["mask", "clip"] = ...) -> None:
|
|
...
|
|
|
|
def inverted(self) -> LogisticTransform:
|
|
...
|
|
|
|
|
|
|
|
class LogisticTransform(Transform):
|
|
input_dims: int
|
|
output_dims: int
|
|
def __init__(self, nonpositive: Literal["mask", "clip"] = ...) -> None:
|
|
...
|
|
|
|
def inverted(self) -> LogitTransform:
|
|
...
|
|
|
|
|
|
|
|
class LogitScale(ScaleBase):
|
|
name: str
|
|
def __init__(self, axis: Axis | None, nonpositive: Literal["mask", "clip"] = ..., *, one_half: str = ..., use_overline: bool = ...) -> None:
|
|
...
|
|
|
|
def get_transform(self) -> LogitTransform:
|
|
...
|
|
|
|
|
|
|
|
def get_scale_names() -> list[str]:
|
|
...
|
|
|
|
def scale_factory(scale: str, axis: Axis, **kwargs) -> ScaleBase:
|
|
...
|
|
|
|
def register_scale(scale_class: type[ScaleBase]) -> None:
|
|
...
|
|
|