You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvim_config/typings/seaborn/distributions.pyi

210 lines
8.1 KiB

"""
This type stub file was generated by pyright.
"""
from ._core import VectorPlotter
from ._decorators import _deprecate_positional_args
"""Plotting functions for visualizing distributions."""
__all__ = ["displot", "histplot", "kdeplot", "ecdfplot", "rugplot", "distplot"]
_dist_params = ...
_param_docs = ...
class _DistributionPlotter(VectorPlotter):
semantics = ...
wide_structure = ...
flat_structure = ...
def __init__(self, data=..., variables=...) -> None:
...
@property
def univariate(self): # -> bool:
"""Return True if only x or y are used."""
...
@property
def data_variable(self): # -> str:
"""Return the variable with data for univariate plots."""
...
@property
def has_xy_data(self): # -> bool:
"""Return True at least one of x or y is defined."""
...
def plot_univariate_histogram(self, multiple, element, fill, common_norm, common_bins, shrink, kde, kde_kws, color, legend, line_kws, estimate_kws, **plot_kws):
...
def plot_bivariate_histogram(self, common_bins, common_norm, thresh, pthresh, pmax, color, legend, cbar, cbar_ax, cbar_kws, estimate_kws, **plot_kws):
...
def plot_univariate_density(self, multiple, common_norm, common_grid, fill, legend, estimate_kws, **plot_kws):
...
def plot_bivariate_density(self, common_norm, fill, levels, thresh, color, legend, cbar, cbar_ax, cbar_kws, estimate_kws, **contour_kws):
...
def plot_univariate_ecdf(self, estimate_kws, legend, **plot_kws): # -> None:
...
def plot_rug(self, height, expand_margins, legend, **kws): # -> None:
...
class _DistributionFacetPlotter(_DistributionPlotter):
semantics = ...
def histplot(data=..., *, x=..., y=..., hue=..., weights=..., stat=..., bins=..., binwidth=..., binrange=..., discrete=..., cumulative=..., common_bins=..., common_norm=..., multiple=..., element=..., fill=..., shrink=..., kde=..., kde_kws=..., line_kws=..., thresh=..., pthresh=..., pmax=..., cbar=..., cbar_ax=..., cbar_kws=..., palette=..., hue_order=..., hue_norm=..., color=..., log_scale=..., legend=..., ax=..., **kwargs): # -> Axes:
...
@_deprecate_positional_args
def kdeplot(x=..., *, y=..., shade=..., vertical=..., kernel=..., bw=..., gridsize=..., cut=..., clip=..., legend=..., cumulative=..., shade_lowest=..., cbar=..., cbar_ax=..., cbar_kws=..., ax=..., weights=..., hue=..., palette=..., hue_order=..., hue_norm=..., multiple=..., common_norm=..., common_grid=..., levels=..., thresh=..., bw_method=..., bw_adjust=..., log_scale=..., color=..., fill=..., data=..., data2=..., **kwargs): # -> Axes:
...
def ecdfplot(data=..., *, x=..., y=..., hue=..., weights=..., stat=..., complementary=..., palette=..., hue_order=..., hue_norm=..., log_scale=..., legend=..., ax=..., **kwargs): # -> Axes:
...
@_deprecate_positional_args
def rugplot(x=..., *, height=..., axis=..., ax=..., data=..., y=..., hue=..., palette=..., hue_order=..., hue_norm=..., expand_margins=..., legend=..., a=..., **kwargs): # -> Axes:
...
def displot(data=..., *, x=..., y=..., hue=..., row=..., col=..., weights=..., kind=..., rug=..., rug_kws=..., log_scale=..., legend=..., palette=..., hue_order=..., hue_norm=..., color=..., col_wrap=..., row_order=..., col_order=..., height=..., aspect=..., facet_kws=..., **kwargs): # -> FacetGrid:
...
def distplot(a=..., bins=..., hist=..., kde=..., rug=..., fit=..., hist_kws=..., kde_kws=..., rug_kws=..., fit_kws=..., color=..., vertical=..., norm_hist=..., axlabel=..., label=..., ax=..., x=...):
"""DEPRECATED: Flexibly plot a univariate distribution of observations.
.. warning::
This function is deprecated and will be removed in a future version.
Please adapt your code to use one of two new functions:
- :func:`displot`, a figure-level function with a similar flexibility
over the kind of plot to draw
- :func:`histplot`, an axes-level function for plotting histograms,
including with kernel density smoothing
This function combines the matplotlib ``hist`` function (with automatic
calculation of a good default bin size) with the seaborn :func:`kdeplot`
and :func:`rugplot` functions. It can also fit ``scipy.stats``
distributions and plot the estimated PDF over the data.
Parameters
----------
a : Series, 1d-array, or list.
Observed data. If this is a Series object with a ``name`` attribute,
the name will be used to label the data axis.
bins : argument for matplotlib hist(), or None, optional
Specification of hist bins. If unspecified, as reference rule is used
that tries to find a useful default.
hist : bool, optional
Whether to plot a (normed) histogram.
kde : bool, optional
Whether to plot a gaussian kernel density estimate.
rug : bool, optional
Whether to draw a rugplot on the support axis.
fit : random variable object, optional
An object with `fit` method, returning a tuple that can be passed to a
`pdf` method a positional arguments following a grid of values to
evaluate the pdf on.
hist_kws : dict, optional
Keyword arguments for :meth:`matplotlib.axes.Axes.hist`.
kde_kws : dict, optional
Keyword arguments for :func:`kdeplot`.
rug_kws : dict, optional
Keyword arguments for :func:`rugplot`.
color : matplotlib color, optional
Color to plot everything but the fitted curve in.
vertical : bool, optional
If True, observed values are on y-axis.
norm_hist : bool, optional
If True, the histogram height shows a density rather than a count.
This is implied if a KDE or fitted density is plotted.
axlabel : string, False, or None, optional
Name for the support axis label. If None, will try to get it
from a.name if False, do not set a label.
label : string, optional
Legend label for the relevant component of the plot.
ax : matplotlib axis, optional
If provided, plot on this axis.
Returns
-------
ax : matplotlib Axes
Returns the Axes object with the plot for further tweaking.
See Also
--------
kdeplot : Show a univariate or bivariate distribution with a kernel
density estimate.
rugplot : Draw small vertical lines to show each observation in a
distribution.
Examples
--------
Show a default plot with a kernel density estimate and histogram with bin
size determined automatically with a reference rule:
.. plot::
:context: close-figs
>>> import seaborn as sns, numpy as np
>>> sns.set_theme(); np.random.seed(0)
>>> x = np.random.randn(100)
>>> ax = sns.distplot(x)
Use Pandas objects to get an informative axis label:
.. plot::
:context: close-figs
>>> import pandas as pd
>>> x = pd.Series(x, name="x variable")
>>> ax = sns.distplot(x)
Plot the distribution with a kernel density estimate and rug plot:
.. plot::
:context: close-figs
>>> ax = sns.distplot(x, rug=True, hist=False)
Plot the distribution with a histogram and maximum likelihood gaussian
distribution fit:
.. plot::
:context: close-figs
>>> from scipy.stats import norm
>>> ax = sns.distplot(x, fit=norm, kde=False)
Plot the distribution on the vertical axis:
.. plot::
:context: close-figs
>>> ax = sns.distplot(x, vertical=True)
Change the color of all the plot elements:
.. plot::
:context: close-figs
>>> sns.set_color_codes()
>>> ax = sns.distplot(x, color="y")
Pass specific parameters to the underlying plot functions:
.. plot::
:context: close-figs
>>> ax = sns.distplot(x, rug=True, rug_kws={"color": "g"},
... kde_kws={"color": "k", "lw": 3, "label": "KDE"},
... hist_kws={"histtype": "step", "linewidth": 3,
... "alpha": 1, "color": "g"})
"""
...