You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvim_config/typings/seaborn/regression.pyi

159 lines
6.5 KiB

"""
This type stub file was generated by pyright.
"""
from ._decorators import _deprecate_positional_args
"""Plotting functions for linear models (broadly construed)."""
_has_statsmodels = ...
__all__ = ["lmplot", "regplot", "residplot"]
class _LinearPlotter:
"""Base class for plotting relational data in tidy format.
To get anything useful done you'll have to inherit from this, but setup
code that can be abstracted out should be put here.
"""
def establish_variables(self, data, **kws): # -> None:
"""Extract variables from data or use directly."""
...
def dropna(self, *vars): # -> None:
"""Remove observations with missing data."""
...
def plot(self, ax):
...
class _RegressionPlotter(_LinearPlotter):
"""Plotter for numeric independent variables with regression model.
This does the computations and drawing for the `regplot` function, and
is thus also used indirectly by `lmplot`.
"""
def __init__(self, x, y, data=..., x_estimator=..., x_bins=..., x_ci=..., scatter=..., fit_reg=..., ci=..., n_boot=..., units=..., seed=..., order=..., logistic=..., lowess=..., robust=..., logx=..., x_partial=..., y_partial=..., truncate=..., dropna=..., x_jitter=..., y_jitter=..., color=..., label=...) -> None:
...
@property
def scatter_data(self): # -> tuple[ndarray[Any, dtype[Unknown]] | NDArray[floating[Any]], ndarray[Any, dtype[Unknown]] | NDArray[floating[Any]]]:
"""Data where each observation is a point."""
...
@property
def estimate_data(self): # -> tuple[list[Any], list[Unknown], list[Unknown]]:
"""Data with a point estimate and CI for each discrete x value."""
...
def fit_regression(self, ax=..., x_range=..., grid=...): # -> tuple[Unknown, Unknown | NDArray[float64] | Any, Unknown | None]:
"""Fit the regression model."""
...
def fit_fast(self, grid): # -> tuple[Any, None] | tuple[Any, Any]:
"""Low-level regression and prediction using linear algebra."""
...
def fit_poly(self, grid, order): # -> tuple[Unknown, None] | tuple[Unknown, NDArray[Unknown]]:
"""Regression using numpy polyfit for higher-order trends."""
...
def fit_statsmodels(self, grid, model, **kwargs): # -> tuple[Unknown | NDArray[float64], None] | tuple[Unknown | NDArray[float64], NDArray[Unknown]]:
"""More general regression function using statsmodels objects."""
...
def fit_lowess(self): # -> tuple[Unknown, Unknown]:
"""Fit a locally-weighted regression, which returns its own grid."""
...
def fit_logx(self, grid): # -> tuple[Any, None] | tuple[Any, Any]:
"""Fit the model in log-space."""
...
def bin_predictor(self, bins): # -> tuple[Any, Any]:
"""Discretize a predictor by assigning value to closest bin."""
...
def regress_out(self, a, b): # -> ndarray[Any, dtype[Unknown]]:
"""Regress b from a keeping a's original mean."""
...
def plot(self, ax, scatter_kws, line_kws): # -> None:
"""Draw the full plot."""
...
def scatterplot(self, ax, kws): # -> None:
"""Draw the data."""
...
def lineplot(self, ax, kws): # -> None:
"""Draw the model."""
...
_regression_docs = ...
@_deprecate_positional_args
def lmplot(*, x=..., y=..., data=..., hue=..., col=..., row=..., palette=..., col_wrap=..., height=..., aspect=..., markers=..., sharex=..., sharey=..., hue_order=..., col_order=..., row_order=..., legend=..., legend_out=..., x_estimator=..., x_bins=..., x_ci=..., scatter=..., fit_reg=..., ci=..., n_boot=..., units=..., seed=..., order=..., logistic=..., lowess=..., robust=..., logx=..., x_partial=..., y_partial=..., truncate=..., x_jitter=..., y_jitter=..., scatter_kws=..., line_kws=..., size=...): # -> FacetGrid:
...
@_deprecate_positional_args
def regplot(*, x=..., y=..., data=..., x_estimator=..., x_bins=..., x_ci=..., scatter=..., fit_reg=..., ci=..., n_boot=..., units=..., seed=..., order=..., logistic=..., lowess=..., robust=..., logx=..., x_partial=..., y_partial=..., truncate=..., dropna=..., x_jitter=..., y_jitter=..., label=..., color=..., marker=..., scatter_kws=..., line_kws=..., ax=...): # -> Axes:
...
@_deprecate_positional_args
def residplot(*, x=..., y=..., data=..., lowess=..., x_partial=..., y_partial=..., order=..., robust=..., dropna=..., label=..., color=..., scatter_kws=..., line_kws=..., ax=...): # -> Axes:
"""Plot the residuals of a linear regression.
This function will regress y on x (possibly as a robust or polynomial
regression) and then draw a scatterplot of the residuals. You can
optionally fit a lowess smoother to the residual plot, which can
help in determining if there is structure to the residuals.
Parameters
----------
x : vector or string
Data or column name in `data` for the predictor variable.
y : vector or string
Data or column name in `data` for the response variable.
data : DataFrame, optional
DataFrame to use if `x` and `y` are column names.
lowess : boolean, optional
Fit a lowess smoother to the residual scatterplot.
{x, y}_partial : matrix or string(s) , optional
Matrix with same first dimension as `x`, or column name(s) in `data`.
These variables are treated as confounding and are removed from
the `x` or `y` variables before plotting.
order : int, optional
Order of the polynomial to fit when calculating the residuals.
robust : boolean, optional
Fit a robust linear regression when calculating the residuals.
dropna : boolean, optional
If True, ignore observations with missing data when fitting and
plotting.
label : string, optional
Label that will be used in any plot legends.
color : matplotlib color, optional
Color to use for all elements of the plot.
{scatter, line}_kws : dictionaries, optional
Additional keyword arguments passed to scatter() and plot() for drawing
the components of the plot.
ax : matplotlib axis, optional
Plot into this axis, otherwise grab the current axis or make a new
one if not existing.
Returns
-------
ax: matplotlib axes
Axes with the regression plot.
See Also
--------
regplot : Plot a simple linear regression model.
jointplot : Draw a :func:`residplot` with univariate marginal distributions
(when used with ``kind="resid"``).
"""
...