You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
5.5 KiB
237 lines
5.5 KiB
"""
|
|
This type stub file was generated by pyright.
|
|
"""
|
|
|
|
import collections.abc
|
|
import contextlib
|
|
import os
|
|
import numpy as np
|
|
from collections.abc import Callable, Collection, Generator, Iterable, Iterator
|
|
from matplotlib.artist import Artist
|
|
from numpy.typing import ArrayLike
|
|
from typing import Any, Generic, IO, Literal, TypeVar, overload
|
|
|
|
_T = TypeVar("_T")
|
|
class CallbackRegistry:
|
|
exception_handler: Callable[[Exception], Any]
|
|
callbacks: dict[Any, dict[int, Any]]
|
|
def __init__(self, exception_handler: Callable[[Exception], Any] | None = ..., *, signals: Iterable[Any] | None = ...) -> None:
|
|
...
|
|
|
|
def connect(self, signal: Any, func: Callable) -> int:
|
|
...
|
|
|
|
def disconnect(self, cid: int) -> None:
|
|
...
|
|
|
|
def process(self, s: Any, *args, **kwargs) -> None:
|
|
...
|
|
|
|
def blocked(self, *, signal: Any | None = ...) -> contextlib.AbstractContextManager[None]:
|
|
...
|
|
|
|
|
|
|
|
class silent_list(list[_T]):
|
|
type: str | None
|
|
def __init__(self, type: str | None, seq: Iterable[_T] | None = ...) -> None:
|
|
...
|
|
|
|
|
|
|
|
def strip_math(s: str) -> str:
|
|
...
|
|
|
|
def is_writable_file_like(obj: Any) -> bool:
|
|
...
|
|
|
|
def file_requires_unicode(x: Any) -> bool:
|
|
...
|
|
|
|
@overload
|
|
def to_filehandle(fname: str | os.PathLike | IO, flag: str = ..., return_opened: Literal[False] = ..., encoding: str | None = ...) -> IO:
|
|
...
|
|
|
|
@overload
|
|
def to_filehandle(fname: str | os.PathLike | IO, flag: str, return_opened: Literal[True], encoding: str | None = ...) -> tuple[IO, bool]:
|
|
...
|
|
|
|
@overload
|
|
def to_filehandle(fname: str | os.PathLike | IO, *, return_opened: Literal[True], encoding: str | None = ...) -> tuple[IO, bool]:
|
|
...
|
|
|
|
def open_file_cm(path_or_file: str | os.PathLike | IO, mode: str = ..., encoding: str | None = ...) -> contextlib.AbstractContextManager[IO]:
|
|
...
|
|
|
|
def is_scalar_or_string(val: Any) -> bool:
|
|
...
|
|
|
|
@overload
|
|
def get_sample_data(fname: str | os.PathLike, asfileobj: Literal[True] = ..., *, np_load: Literal[True]) -> np.ndarray:
|
|
...
|
|
|
|
@overload
|
|
def get_sample_data(fname: str | os.PathLike, asfileobj: Literal[True] = ..., *, np_load: Literal[False] = ...) -> IO:
|
|
...
|
|
|
|
@overload
|
|
def get_sample_data(fname: str | os.PathLike, asfileobj: Literal[False], *, np_load: bool = ...) -> str:
|
|
...
|
|
|
|
def flatten(seq: Iterable[Any], scalarp: Callable[[Any], bool] = ...) -> Generator[Any, None, None]:
|
|
...
|
|
|
|
class Stack(Generic[_T]):
|
|
def __init__(self, default: _T | None = ...) -> None:
|
|
...
|
|
|
|
def __call__(self) -> _T:
|
|
...
|
|
|
|
def __len__(self) -> int:
|
|
...
|
|
|
|
def __getitem__(self, ind: int) -> _T:
|
|
...
|
|
|
|
def forward(self) -> _T:
|
|
...
|
|
|
|
def back(self) -> _T:
|
|
...
|
|
|
|
def push(self, o: _T) -> _T:
|
|
...
|
|
|
|
def home(self) -> _T:
|
|
...
|
|
|
|
def empty(self) -> bool:
|
|
...
|
|
|
|
def clear(self) -> None:
|
|
...
|
|
|
|
def bubble(self, o: _T) -> _T:
|
|
...
|
|
|
|
def remove(self, o: _T) -> None:
|
|
...
|
|
|
|
|
|
|
|
def safe_masked_invalid(x: ArrayLike, copy: bool = ...) -> np.ndarray:
|
|
...
|
|
|
|
def print_cycles(objects: Iterable[Any], outstream: IO = ..., show_progress: bool = ...) -> None:
|
|
...
|
|
|
|
class Grouper(Generic[_T]):
|
|
def __init__(self, init: Iterable[_T] = ...) -> None:
|
|
...
|
|
|
|
def __contains__(self, item: _T) -> bool:
|
|
...
|
|
|
|
def clean(self) -> None:
|
|
...
|
|
|
|
def join(self, a: _T, *args: _T) -> None:
|
|
...
|
|
|
|
def joined(self, a: _T, b: _T) -> bool:
|
|
...
|
|
|
|
def remove(self, a: _T) -> None:
|
|
...
|
|
|
|
def __iter__(self) -> Iterator[list[_T]]:
|
|
...
|
|
|
|
def get_siblings(self, a: _T) -> list[_T]:
|
|
...
|
|
|
|
|
|
|
|
class GrouperView(Generic[_T]):
|
|
def __init__(self, grouper: Grouper[_T]) -> None:
|
|
...
|
|
|
|
def __contains__(self, item: _T) -> bool:
|
|
...
|
|
|
|
def __iter__(self) -> Iterator[list[_T]]:
|
|
...
|
|
|
|
def joined(self, a: _T, b: _T) -> bool:
|
|
...
|
|
|
|
def get_siblings(self, a: _T) -> list[_T]:
|
|
...
|
|
|
|
|
|
|
|
def simple_linear_interpolation(a: ArrayLike, steps: int) -> np.ndarray:
|
|
...
|
|
|
|
def delete_masked_points(*args):
|
|
...
|
|
|
|
def boxplot_stats(X: ArrayLike, whis: float | tuple[float, float] = ..., bootstrap: int | None = ..., labels: ArrayLike | None = ..., autorange: bool = ...) -> list[dict[str, Any]]:
|
|
...
|
|
|
|
ls_mapper: dict[str, str]
|
|
ls_mapper_r: dict[str, str]
|
|
def contiguous_regions(mask: ArrayLike) -> list[np.ndarray]:
|
|
...
|
|
|
|
def is_math_text(s: str) -> bool:
|
|
...
|
|
|
|
def violin_stats(X: ArrayLike, method: Callable, points: int = ..., quantiles: ArrayLike | None = ...) -> list[dict[str, Any]]:
|
|
...
|
|
|
|
def pts_to_prestep(x: ArrayLike, *args: ArrayLike) -> np.ndarray:
|
|
...
|
|
|
|
def pts_to_poststep(x: ArrayLike, *args: ArrayLike) -> np.ndarray:
|
|
...
|
|
|
|
def pts_to_midstep(x: np.ndarray, *args: np.ndarray) -> np.ndarray:
|
|
...
|
|
|
|
STEP_LOOKUP_MAP: dict[str, Callable]
|
|
def index_of(y: float | ArrayLike) -> tuple[np.ndarray, np.ndarray]:
|
|
...
|
|
|
|
def safe_first_element(obj: Collection[_T]) -> _T:
|
|
...
|
|
|
|
def sanitize_sequence(data):
|
|
...
|
|
|
|
def normalize_kwargs(kw: dict[str, Any], alias_mapping: dict[str, list[str]] | type[Artist] | Artist | None = ...) -> dict[str, Any]:
|
|
...
|
|
|
|
class _OrderedSet(collections.abc.MutableSet):
|
|
def __init__(self) -> None:
|
|
...
|
|
|
|
def __contains__(self, key) -> bool:
|
|
...
|
|
|
|
def __iter__(self):
|
|
...
|
|
|
|
def __len__(self) -> int:
|
|
...
|
|
|
|
def add(self, key) -> None:
|
|
...
|
|
|
|
def discard(self, key) -> None:
|
|
...
|
|
|
|
|
|
|