You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
2.8 KiB
166 lines
2.8 KiB
"""
|
|
This type stub file was generated by pyright.
|
|
"""
|
|
|
|
from typing import Any
|
|
from numpy.lib.index_tricks import AxisConcatenator
|
|
|
|
__all__: list[str]
|
|
def count_masked(arr, axis=...):
|
|
...
|
|
|
|
def masked_all(shape, dtype=...):
|
|
...
|
|
|
|
def masked_all_like(arr):
|
|
...
|
|
|
|
class _fromnxfunction:
|
|
__name__: Any
|
|
__doc__: Any
|
|
def __init__(self, funcname) -> None:
|
|
...
|
|
|
|
def getdoc(self):
|
|
...
|
|
|
|
def __call__(self, *args, **params):
|
|
...
|
|
|
|
|
|
|
|
class _fromnxfunction_single(_fromnxfunction):
|
|
def __call__(self, x, *args, **params):
|
|
...
|
|
|
|
|
|
|
|
class _fromnxfunction_seq(_fromnxfunction):
|
|
def __call__(self, x, *args, **params):
|
|
...
|
|
|
|
|
|
|
|
class _fromnxfunction_allargs(_fromnxfunction):
|
|
def __call__(self, *args, **params):
|
|
...
|
|
|
|
|
|
|
|
atleast_1d: _fromnxfunction_allargs
|
|
atleast_2d: _fromnxfunction_allargs
|
|
atleast_3d: _fromnxfunction_allargs
|
|
vstack: _fromnxfunction_seq
|
|
row_stack: _fromnxfunction_seq
|
|
hstack: _fromnxfunction_seq
|
|
column_stack: _fromnxfunction_seq
|
|
dstack: _fromnxfunction_seq
|
|
stack: _fromnxfunction_seq
|
|
hsplit: _fromnxfunction_single
|
|
diagflat: _fromnxfunction_single
|
|
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
|
|
...
|
|
|
|
def apply_over_axes(func, a, axes):
|
|
...
|
|
|
|
def average(a, axis=..., weights=..., returned=..., keepdims=...):
|
|
...
|
|
|
|
def median(a, axis=..., out=..., overwrite_input=..., keepdims=...):
|
|
...
|
|
|
|
def compress_nd(x, axis=...):
|
|
...
|
|
|
|
def compress_rowcols(x, axis=...):
|
|
...
|
|
|
|
def compress_rows(a):
|
|
...
|
|
|
|
def compress_cols(a):
|
|
...
|
|
|
|
def mask_rows(a, axis=...):
|
|
...
|
|
|
|
def mask_cols(a, axis=...):
|
|
...
|
|
|
|
def ediff1d(arr, to_end=..., to_begin=...):
|
|
...
|
|
|
|
def unique(ar1, return_index=..., return_inverse=...):
|
|
...
|
|
|
|
def intersect1d(ar1, ar2, assume_unique=...):
|
|
...
|
|
|
|
def setxor1d(ar1, ar2, assume_unique=...):
|
|
...
|
|
|
|
def in1d(ar1, ar2, assume_unique=..., invert=...):
|
|
...
|
|
|
|
def isin(element, test_elements, assume_unique=..., invert=...):
|
|
...
|
|
|
|
def union1d(ar1, ar2):
|
|
...
|
|
|
|
def setdiff1d(ar1, ar2, assume_unique=...):
|
|
...
|
|
|
|
def cov(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...):
|
|
...
|
|
|
|
def corrcoef(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...):
|
|
...
|
|
|
|
class MAxisConcatenator(AxisConcatenator):
|
|
concatenate: Any
|
|
@classmethod
|
|
def makemat(cls, arr):
|
|
...
|
|
|
|
def __getitem__(self, key):
|
|
...
|
|
|
|
|
|
|
|
class mr_class(MAxisConcatenator):
|
|
def __init__(self) -> None:
|
|
...
|
|
|
|
|
|
|
|
mr_: mr_class
|
|
def ndenumerate(a, compressed=...):
|
|
...
|
|
|
|
def flatnotmasked_edges(a):
|
|
...
|
|
|
|
def notmasked_edges(a, axis=...):
|
|
...
|
|
|
|
def flatnotmasked_contiguous(a):
|
|
...
|
|
|
|
def notmasked_contiguous(a, axis=...):
|
|
...
|
|
|
|
def clump_unmasked(a):
|
|
...
|
|
|
|
def clump_masked(a):
|
|
...
|
|
|
|
def vander(x, n=...):
|
|
...
|
|
|
|
def polyfit(x, y, deg, rcond=..., full=..., w=..., cov=...):
|
|
...
|
|
|