You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
234 lines
6.4 KiB
234 lines
6.4 KiB
"""
|
|
This type stub file was generated by pyright.
|
|
"""
|
|
|
|
from collections.abc import Iterable
|
|
from typing import Any, Literal as L, NamedTuple, SupportsIndex, SupportsInt, TypeVar, overload
|
|
from numpy import complex128, complexfloating, float64, floating, generic, int32
|
|
from numpy._typing import ArrayLike, NDArray, _ArrayLikeComplex_co, _ArrayLikeFloat_co, _ArrayLikeInt_co, _ArrayLikeObject_co, _ArrayLikeTD64_co
|
|
|
|
_T = TypeVar("_T")
|
|
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
|
|
_SCT = TypeVar("_SCT", bound=generic, covariant=True)
|
|
_SCT2 = TypeVar("_SCT2", bound=generic, covariant=True)
|
|
_2Tuple = tuple[_T, _T]
|
|
_ModeKind = L["reduced", "complete", "r", "raw"]
|
|
__all__: list[str]
|
|
class EigResult(NamedTuple):
|
|
eigenvalues: NDArray[Any]
|
|
eigenvectors: NDArray[Any]
|
|
...
|
|
|
|
|
|
class EighResult(NamedTuple):
|
|
eigenvalues: NDArray[Any]
|
|
eigenvectors: NDArray[Any]
|
|
...
|
|
|
|
|
|
class QRResult(NamedTuple):
|
|
Q: NDArray[Any]
|
|
R: NDArray[Any]
|
|
...
|
|
|
|
|
|
class SlogdetResult(NamedTuple):
|
|
sign: Any
|
|
logabsdet: Any
|
|
...
|
|
|
|
|
|
class SVDResult(NamedTuple):
|
|
U: NDArray[Any]
|
|
S: NDArray[Any]
|
|
Vh: NDArray[Any]
|
|
...
|
|
|
|
|
|
@overload
|
|
def tensorsolve(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, axes: None | Iterable[int] = ...) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def tensorsolve(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, axes: None | Iterable[int] = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def tensorsolve(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, axes: None | Iterable[int] = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def solve(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def solve(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def solve(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def tensorinv(a: _ArrayLikeInt_co, ind: int = ...) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def tensorinv(a: _ArrayLikeFloat_co, ind: int = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def tensorinv(a: _ArrayLikeComplex_co, ind: int = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def inv(a: _ArrayLikeInt_co) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
def matrix_power(a: _ArrayLikeComplex_co | _ArrayLikeObject_co, n: SupportsIndex) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult:
|
|
...
|
|
|
|
@overload
|
|
def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult:
|
|
...
|
|
|
|
@overload
|
|
def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult:
|
|
...
|
|
|
|
@overload
|
|
def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]:
|
|
...
|
|
|
|
@overload
|
|
def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]] | NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def eig(a: _ArrayLikeInt_co) -> EigResult:
|
|
...
|
|
|
|
@overload
|
|
def eig(a: _ArrayLikeFloat_co) -> EigResult:
|
|
...
|
|
|
|
@overload
|
|
def eig(a: _ArrayLikeComplex_co) -> EigResult:
|
|
...
|
|
|
|
@overload
|
|
def eigh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> EighResult:
|
|
...
|
|
|
|
@overload
|
|
def eigh(a: _ArrayLikeFloat_co, UPLO: L["L", "U", "l", "u"] = ...) -> EighResult:
|
|
...
|
|
|
|
@overload
|
|
def eigh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> EighResult:
|
|
...
|
|
|
|
@overload
|
|
def svd(a: _ArrayLikeInt_co, full_matrices: bool = ..., compute_uv: L[True] = ..., hermitian: bool = ...) -> SVDResult:
|
|
...
|
|
|
|
@overload
|
|
def svd(a: _ArrayLikeFloat_co, full_matrices: bool = ..., compute_uv: L[True] = ..., hermitian: bool = ...) -> SVDResult:
|
|
...
|
|
|
|
@overload
|
|
def svd(a: _ArrayLikeComplex_co, full_matrices: bool = ..., compute_uv: L[True] = ..., hermitian: bool = ...) -> SVDResult:
|
|
...
|
|
|
|
@overload
|
|
def svd(a: _ArrayLikeInt_co, full_matrices: bool = ..., compute_uv: L[False] = ..., hermitian: bool = ...) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def svd(a: _ArrayLikeComplex_co, full_matrices: bool = ..., compute_uv: L[False] = ..., hermitian: bool = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any:
|
|
...
|
|
|
|
def matrix_rank(A: _ArrayLikeComplex_co, tol: None | _ArrayLikeFloat_co = ..., hermitian: bool = ...) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def pinv(a: _ArrayLikeInt_co, rcond: _ArrayLikeFloat_co = ..., hermitian: bool = ...) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def pinv(a: _ArrayLikeFloat_co, rcond: _ArrayLikeFloat_co = ..., hermitian: bool = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def pinv(a: _ArrayLikeComplex_co, rcond: _ArrayLikeFloat_co = ..., hermitian: bool = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult:
|
|
...
|
|
|
|
def det(a: _ArrayLikeComplex_co) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> tuple[NDArray[float64], NDArray[float64], int32, NDArray[float64],]:
|
|
...
|
|
|
|
@overload
|
|
def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> tuple[NDArray[floating[Any]], NDArray[floating[Any]], int32, NDArray[floating[Any]],]:
|
|
...
|
|
|
|
@overload
|
|
def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> tuple[NDArray[complexfloating[Any, Any]], NDArray[floating[Any]], int32, NDArray[floating[Any]],]:
|
|
...
|
|
|
|
@overload
|
|
def norm(x: ArrayLike, ord: None | float | L["fro", "nuc"] = ..., axis: None = ..., keepdims: bool = ...) -> floating[Any]:
|
|
...
|
|
|
|
@overload
|
|
def norm(x: ArrayLike, ord: None | float | L["fro", "nuc"] = ..., axis: SupportsInt | SupportsIndex | tuple[int, ...] = ..., keepdims: bool = ...) -> Any:
|
|
...
|
|
|
|
def multi_dot(arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co], *, out: None | NDArray[Any] = ...) -> Any:
|
|
...
|
|
|