Improved BVH using surface area heuristic*
- Add custom error type - Update more mesh based calculations to f32
This commit is contained in:
parent
6f404ba2a1
commit
ba74db96f0
173
src/bvh.rs
173
src/bvh.rs
@ -1,4 +1,17 @@
|
|||||||
use crate::{primitives::Box3, stl::parser::StlSolid};
|
use core::f64;
|
||||||
|
|
||||||
|
use crate::{errors::RoctreeError, primitives::Box3, stl::parser::StlSolid};
|
||||||
|
|
||||||
|
/// Number of potential split planes to check
|
||||||
|
const NBINS: usize = 8;
|
||||||
|
|
||||||
|
/// Struct to hold bin information, this includes an axis-aligned bounding box as well as the count
|
||||||
|
/// of triangles with the
|
||||||
|
#[derive(Default, Clone)]
|
||||||
|
struct Bin {
|
||||||
|
aabb: Box3,
|
||||||
|
tri_count: usize,
|
||||||
|
}
|
||||||
|
|
||||||
/// A node representing a node single in the bounding volume hierarchy
|
/// A node representing a node single in the bounding volume hierarchy
|
||||||
#[derive(Default)]
|
#[derive(Default)]
|
||||||
@ -10,6 +23,16 @@ struct BvhNode {
|
|||||||
prim_count: usize,
|
prim_count: usize,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl BvhNode {
|
||||||
|
/// This computes the computational cost associated with the specific node.
|
||||||
|
/// The cost is an aggregate that considers the size of the bounding box (how likely it will
|
||||||
|
/// intersect a ray) * the number of triangles (the number of ray-triangle checks we have to
|
||||||
|
/// perform if an intersect occurs)
|
||||||
|
fn calculate_node_cost(&self) -> f32 {
|
||||||
|
self.aabb.surface_area() * self.prim_count as f32
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// Struct representing the total bounding volume hierarchy
|
/// Struct representing the total bounding volume hierarchy
|
||||||
pub struct Bvh {
|
pub struct Bvh {
|
||||||
nodes: Vec<BvhNode>,
|
nodes: Vec<BvhNode>,
|
||||||
@ -17,14 +40,15 @@ pub struct Bvh {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/// Return type for get_subdivision_position_and_axis
|
/// Return type for get_subdivision_position_and_axis
|
||||||
struct SplitPlane {
|
struct BestSplitPlane {
|
||||||
axis: usize,
|
axis: usize,
|
||||||
pos: f64,
|
pos: f64,
|
||||||
|
cost: f64,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Bvh {
|
impl Bvh {
|
||||||
/// Create a new Bounding volume hierarchy from an STL solid.
|
/// Create a new Bounding volume hierarchy from an STL solid.
|
||||||
pub fn new(solid: &StlSolid) -> Self {
|
pub fn new(solid: &StlSolid) -> Result<Bvh, RoctreeError> {
|
||||||
// Initialize the root node
|
// Initialize the root node
|
||||||
let mut nodes = vec![BvhNode {
|
let mut nodes = vec![BvhNode {
|
||||||
prim_idx: 0,
|
prim_idx: 0,
|
||||||
@ -40,16 +64,22 @@ impl Bvh {
|
|||||||
tri_idx: Vec::from_iter(0..solid.triangles.len()),
|
tri_idx: Vec::from_iter(0..solid.triangles.len()),
|
||||||
};
|
};
|
||||||
|
|
||||||
bvh.subdivide(0, solid);
|
bvh.subdivide(0, solid)?;
|
||||||
bvh
|
Ok(bvh)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Subdivide a node, subdivision doesn't occur if the node has only 2 primitives
|
/// Subdivide a node, subdivision doesn't occur if the node has only 2 primitives
|
||||||
pub fn subdivide(&mut self, node_idx: usize, solid: &StlSolid) {
|
pub fn subdivide(&mut self, node_idx: usize, solid: &StlSolid) -> Result<(), RoctreeError> {
|
||||||
let SplitPlane {
|
let BestSplitPlane {
|
||||||
|
cost,
|
||||||
axis: split_axis,
|
axis: split_axis,
|
||||||
pos: split_position,
|
pos: split_position,
|
||||||
} = self.get_split_plane(node_idx);
|
} = self.get_best_split(node_idx, solid)?;
|
||||||
|
|
||||||
|
// If the split cost is greater than keeping the node intact just return
|
||||||
|
if cost > self.nodes[node_idx].calculate_node_cost() as f64 {
|
||||||
|
return Ok(());
|
||||||
|
}
|
||||||
|
|
||||||
let prim_count = self.nodes[node_idx].prim_count;
|
let prim_count = self.nodes[node_idx].prim_count;
|
||||||
let prim_idx = self.nodes[node_idx].prim_idx;
|
let prim_idx = self.nodes[node_idx].prim_idx;
|
||||||
@ -74,7 +104,7 @@ impl Bvh {
|
|||||||
// If all primitives belong to either the left or right half exit because the parent node
|
// If all primitives belong to either the left or right half exit because the parent node
|
||||||
// is a leaf
|
// is a leaf
|
||||||
if left_count == 0 || left_count == prim_count {
|
if left_count == 0 || left_count == prim_count {
|
||||||
return;
|
return Ok(());
|
||||||
}
|
}
|
||||||
|
|
||||||
// Otherwise split the nodes into left and right child
|
// Otherwise split the nodes into left and right child
|
||||||
@ -117,24 +147,117 @@ impl Bvh {
|
|||||||
self.nodes[node_idx].right_child = right_child;
|
self.nodes[node_idx].right_child = right_child;
|
||||||
|
|
||||||
// Recurse to divide children
|
// Recurse to divide children
|
||||||
self.subdivide(left_child, solid);
|
self.subdivide(left_child, solid)?;
|
||||||
self.subdivide(right_child, solid);
|
self.subdivide(right_child, solid)?;
|
||||||
|
|
||||||
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Calculate the optimal split plane axis and position.
|
/// Get the best split plane based on the surface area heuristic
|
||||||
/// This function should use the surface area heuristic to select the optimal split
|
/// This procedure works by binning
|
||||||
fn get_split_plane(&self, node_idx: usize) -> SplitPlane {
|
fn get_best_split(
|
||||||
// Initial approach just splits halfway along the longest axis
|
&self,
|
||||||
// TODO: Improve this to use the surface area heuristic
|
node_idx: usize,
|
||||||
let axis = (0..3).fold(0, |acc, a| {
|
solid: &StlSolid,
|
||||||
if self.nodes[node_idx].aabb.extents[acc] < self.nodes[node_idx].aabb.extents[a] {
|
) -> Result<BestSplitPlane, RoctreeError> {
|
||||||
a
|
// Initialize the best split plane information with bad values so we know if no plane gets
|
||||||
} else {
|
// assigned
|
||||||
acc
|
let mut best_cost = f64::INFINITY;
|
||||||
}
|
let mut best_pos = f64::NAN;
|
||||||
});
|
|
||||||
|
|
||||||
let pos = self.nodes[node_idx].aabb.extents[axis] / 2.0;
|
// Pick the longest axis as the splitting axis
|
||||||
SplitPlane { axis, pos }
|
let axis = self.nodes[node_idx]
|
||||||
|
.aabb
|
||||||
|
.get_extents()
|
||||||
|
.iter()
|
||||||
|
.enumerate()
|
||||||
|
.fold((0_usize, &f32::NEG_INFINITY), |acc, a| {
|
||||||
|
if acc.1 > a.1 {
|
||||||
|
acc
|
||||||
|
} else {
|
||||||
|
a
|
||||||
|
}
|
||||||
|
})
|
||||||
|
.0;
|
||||||
|
|
||||||
|
let node = &self.nodes[node_idx];
|
||||||
|
// Get minimum and maximum bounds over the centroids off the triangles. This improves
|
||||||
|
// the binning compared to doing the binning over the vertices
|
||||||
|
let (min_bd, max_bd) = self.tri_idx[node.prim_idx..node.prim_idx + node.prim_count]
|
||||||
|
.iter()
|
||||||
|
.fold((f64::INFINITY, f64::NEG_INFINITY), |bounds, tri_idx| {
|
||||||
|
(
|
||||||
|
bounds
|
||||||
|
.0
|
||||||
|
.min(solid.triangle_centroids[*tri_idx][axis].into()),
|
||||||
|
bounds
|
||||||
|
.1
|
||||||
|
.max(solid.triangle_centroids[*tri_idx][axis].into()),
|
||||||
|
)
|
||||||
|
});
|
||||||
|
if min_bd == max_bd {
|
||||||
|
return Err(RoctreeError::SplitPlaneError);
|
||||||
|
};
|
||||||
|
|
||||||
|
let mut bins = vec![Bin::default(); NBINS];
|
||||||
|
let scale = NBINS as f64 / (max_bd - min_bd);
|
||||||
|
|
||||||
|
// Assign the triangles to each of the bins
|
||||||
|
for tri_idx in self.tri_idx[node.prim_idx..node.prim_idx + node.prim_count].iter() {
|
||||||
|
let bin_index = usize::min(
|
||||||
|
NBINS - 1,
|
||||||
|
((solid.triangle_centroids[*tri_idx][axis] as f64 - min_bd) * scale) as usize,
|
||||||
|
);
|
||||||
|
|
||||||
|
bins[bin_index].tri_count += 1;
|
||||||
|
bins[bin_index]
|
||||||
|
.aabb
|
||||||
|
.grow(solid.vertices[solid.triangles[*tri_idx][0]]);
|
||||||
|
bins[bin_index]
|
||||||
|
.aabb
|
||||||
|
.grow(solid.vertices[solid.triangles[*tri_idx][1]]);
|
||||||
|
bins[bin_index]
|
||||||
|
.aabb
|
||||||
|
.grow(solid.vertices[solid.triangles[*tri_idx][2]]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Now get the left and right counts for each split plane (based on the bins)
|
||||||
|
let mut left_area = [0.0; NBINS - 1];
|
||||||
|
let mut right_area = [0.0; NBINS - 1];
|
||||||
|
let mut left_count = [0; NBINS - 1];
|
||||||
|
let mut right_count = [0; NBINS - 1];
|
||||||
|
let mut left_box = Box3::default();
|
||||||
|
let mut right_box = Box3::default();
|
||||||
|
let mut left_sum = 0;
|
||||||
|
let mut right_sum = 0;
|
||||||
|
for plane_idx in 0..NBINS - 1 {
|
||||||
|
// Calculate the left side of the plane
|
||||||
|
left_sum += bins[plane_idx].tri_count;
|
||||||
|
left_count[plane_idx] = left_sum;
|
||||||
|
left_box.grow_by_other_box(&bins[plane_idx].aabb);
|
||||||
|
left_area[plane_idx] = left_box.surface_area();
|
||||||
|
|
||||||
|
// Calculate the right side of the plane
|
||||||
|
right_sum += bins[NBINS - 1 - plane_idx].tri_count;
|
||||||
|
right_count[NBINS - 2 - plane_idx] = right_sum;
|
||||||
|
right_box.grow_by_other_box(&bins[NBINS - 1 - plane_idx].aabb);
|
||||||
|
right_area[NBINS - 2 - plane_idx] = right_box.surface_area();
|
||||||
|
}
|
||||||
|
let scale = 1.0 / scale;
|
||||||
|
for plane_idx in 0..NBINS - 1 {
|
||||||
|
let plane_cost: f64 = (left_count[plane_idx] as f32 * left_area[plane_idx]
|
||||||
|
+ right_count[plane_idx] as f32 * right_area[plane_idx])
|
||||||
|
.into();
|
||||||
|
if plane_cost < best_cost {
|
||||||
|
best_cost = plane_cost;
|
||||||
|
best_pos = scale * plane_idx as f64;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(BestSplitPlane {
|
||||||
|
axis,
|
||||||
|
pos: best_pos,
|
||||||
|
cost: best_cost,
|
||||||
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
19
src/errors.rs
Normal file
19
src/errors.rs
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
use std::{error::Error, fmt::Display};
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub enum RoctreeError {
|
||||||
|
SplitPlaneError,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Error for RoctreeError {}
|
||||||
|
|
||||||
|
impl Display for RoctreeError {
|
||||||
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||||
|
match self {
|
||||||
|
RoctreeError::SplitPlaneError => write!(
|
||||||
|
f,
|
||||||
|
"Failed to get split plane, centroids overlap along longest axis"
|
||||||
|
),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -1,4 +1,5 @@
|
|||||||
pub mod bvh;
|
pub mod bvh;
|
||||||
|
pub mod errors;
|
||||||
pub mod octree;
|
pub mod octree;
|
||||||
pub mod primitives;
|
pub mod primitives;
|
||||||
pub mod stl;
|
pub mod stl;
|
||||||
|
@ -1,37 +1,36 @@
|
|||||||
use std::collections::BTreeSet;
|
use vecmath::vec3_sub;
|
||||||
|
|
||||||
use itertools::Itertools;
|
#[derive(Default, Clone)]
|
||||||
use vecmath::{vec3_add, vec3_scale};
|
|
||||||
|
|
||||||
#[derive(Default)]
|
|
||||||
pub struct Box3 {
|
pub struct Box3 {
|
||||||
pub center: [f64; 3],
|
pub min_bd: [f32; 3],
|
||||||
pub extents: [f64; 3],
|
pub max_bd: [f32; 3],
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Box3 {
|
impl Box3 {
|
||||||
/// Create a new box from the bounding values
|
/// Create a new box from the bounding values
|
||||||
pub fn new_from_bounds(min_bound: [f32; 3], max_bound: [f32; 3]) -> Self {
|
pub fn new_from_bounds(min_bd: [f32; 3], max_bd: [f32; 3]) -> Self {
|
||||||
let mut center = [0.0; 3];
|
Box3 { min_bd, max_bd }
|
||||||
let mut extents = [0.0; 3];
|
|
||||||
for (i, (min_val, max_val)) in min_bound.iter().zip(max_bound).enumerate() {
|
|
||||||
center[i] = ((min_val + max_val) / 2.0) as f64;
|
|
||||||
extents[i] = (max_val - min_val) as f64;
|
|
||||||
}
|
|
||||||
Box3 { center, extents }
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// This function returns the 8 vertices of an axis-aligned bounding box.
|
/// This function returns the 8 vertices of an axis-aligned bounding box.
|
||||||
pub fn get_vertices(&self) -> Vec<[f64; 3]> {
|
/// These are ordered
|
||||||
let half_extent = vec3_scale(self.extents, 0.5);
|
/// 7----6
|
||||||
|
/// | /| /|
|
||||||
// Define all eight corners relative to the center.
|
/// | 4----5
|
||||||
[-half_extent[0], half_extent[0]]
|
/// | | 3--| 2
|
||||||
.into_iter()
|
/// | |/ |/
|
||||||
.cartesian_product([-half_extent[1], half_extent[1]])
|
/// | 0----1
|
||||||
.cartesian_product([-half_extent[2], half_extent[2]])
|
pub fn get_vertices(&self) -> Vec<[f32; 3]> {
|
||||||
.map(|((x, y), z)| vec3_add(self.center, [x, y, z]))
|
vec![
|
||||||
.collect()
|
self.min_bd,
|
||||||
|
[self.max_bd[0], self.min_bd[1], self.min_bd[2]],
|
||||||
|
[self.max_bd[0], self.max_bd[1], self.min_bd[2]],
|
||||||
|
[self.min_bd[0], self.max_bd[1], self.min_bd[2]],
|
||||||
|
[self.max_bd[0], self.min_bd[1], self.max_bd[2]],
|
||||||
|
[self.max_bd[0], self.max_bd[1], self.max_bd[2]],
|
||||||
|
self.max_bd,
|
||||||
|
[self.min_bd[0], self.max_bd[1], self.max_bd[2]],
|
||||||
|
]
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Expand a box to fit all primitive inside of it.
|
/// Expand a box to fit all primitive inside of it.
|
||||||
@ -43,31 +42,50 @@ impl Box3 {
|
|||||||
{
|
{
|
||||||
// If the current primitive list is empty, zero bounding box and exit
|
// If the current primitive list is empty, zero bounding box and exit
|
||||||
if primitives.is_empty() {
|
if primitives.is_empty() {
|
||||||
self.center = [0.0; 3];
|
self.min_bd = [0.0; 3];
|
||||||
self.extents = [0.0; 3]
|
self.max_bd = [0.0; 3];
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
// Get all of the unique vertex indices so we don't have to check them multiple times
|
|
||||||
let unique_vertex_idxs: BTreeSet<&usize> = BTreeSet::from_iter(primitives.iter().flatten());
|
|
||||||
|
|
||||||
// Now expand the box
|
for vertex_idx in primitives.iter().flatten() {
|
||||||
let mut min_bd = [f32::INFINITY; 3];
|
self.grow(vertices[*vertex_idx]);
|
||||||
let mut max_bd = [f32::NEG_INFINITY; 3];
|
}
|
||||||
|
}
|
||||||
|
|
||||||
for idx in unique_vertex_idxs.into_iter() {
|
/// Compute the surface area of a box
|
||||||
for ((vertex_pos, min_pos), max_pos) in vertices[*idx]
|
pub fn surface_area(&self) -> f32 {
|
||||||
.iter()
|
let extents = vec3_sub(self.max_bd, self.min_bd);
|
||||||
.zip(min_bd.iter_mut())
|
extents[0] * extents[1] + extents[1] * extents[2] + extents[2] * extents[0]
|
||||||
.zip(max_bd.iter_mut())
|
}
|
||||||
{
|
|
||||||
*min_pos = vertex_pos.min(*min_pos);
|
/// Get the extents of the current box
|
||||||
*max_pos = vertex_pos.max(*max_pos);
|
#[inline(always)]
|
||||||
}
|
pub fn get_extents(&self) -> [f32; 3] {
|
||||||
|
vec3_sub(self.max_bd, self.min_bd)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Grow the axis aligned bounding box to include a specific vertex
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn grow(&mut self, vertex: [f32; 3]) {
|
||||||
|
for (axis, pos) in vertex.iter().enumerate() {
|
||||||
|
self.min_bd[axis] = self.min_bd[axis].min(*pos);
|
||||||
|
self.max_bd[axis] = self.max_bd[axis].min(*pos);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Grow the axis aligned bounding box to include a min and max boundary
|
||||||
|
/// This is useful when trying to combine two bounding boxes
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn grow_by_other_box(&mut self, other: &Self) {
|
||||||
|
for axis in 0..3 {
|
||||||
|
self.min_bd[axis] = self.min_bd[axis].min(other.min_bd[axis]);
|
||||||
|
self.max_bd[axis] = self.max_bd[axis].max(other.max_bd[axis]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub struct Triangle {
|
pub struct Triangle {
|
||||||
pub v1: [f64; 3],
|
pub v1: [f32; 3],
|
||||||
pub v2: [f64; 3],
|
pub v2: [f32; 3],
|
||||||
pub v3: [f64; 3],
|
pub v3: [f32; 3],
|
||||||
}
|
}
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
use core::f64;
|
|
||||||
|
|
||||||
use vecmath::{vec3_cross, vec3_dot, vec3_sub};
|
use vecmath::{vec3_cross, vec3_dot, vec3_sub};
|
||||||
|
|
||||||
use crate::primitives::{Box3, Triangle};
|
use crate::primitives::{Box3, Triangle};
|
||||||
@ -28,8 +26,8 @@ pub fn tri_aabb_intersect(bx: &Box3, tri: &Triangle) -> bool {
|
|||||||
let box_projection = project_pnts(&box_vertices, axis);
|
let box_projection = project_pnts(&box_vertices, axis);
|
||||||
let tri_projection = project_pnts(&[tri.v1, tri.v2, tri.v3], axis);
|
let tri_projection = project_pnts(&[tri.v1, tri.v2, tri.v3], axis);
|
||||||
|
|
||||||
let start = f64::max(box_projection.0, tri_projection.0);
|
let start = f32::max(box_projection.0, tri_projection.0);
|
||||||
let end = f64::min(box_projection.1, tri_projection.1);
|
let end = f32::min(box_projection.1, tri_projection.1);
|
||||||
if start < end {
|
if start < end {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
@ -38,9 +36,9 @@ pub fn tri_aabb_intersect(bx: &Box3, tri: &Triangle) -> bool {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/// Project points unto an Axis and return the max and min
|
/// Project points unto an Axis and return the max and min
|
||||||
fn project_pnts(pnts: &[[f64; 3]], axis: [f64; 3]) -> (f64, f64) {
|
fn project_pnts(pnts: &[[f32; 3]], axis: [f32; 3]) -> (f32, f32) {
|
||||||
let mut min_proj = f64::INFINITY;
|
let mut min_proj = f32::INFINITY;
|
||||||
let mut max_proj = f64::NEG_INFINITY;
|
let mut max_proj = f32::NEG_INFINITY;
|
||||||
for pnt in pnts {
|
for pnt in pnts {
|
||||||
let projection = vec3_dot(axis, *pnt);
|
let projection = vec3_dot(axis, *pnt);
|
||||||
min_proj = min_proj.min(projection);
|
min_proj = min_proj.min(projection);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user