Compare commits

..

No commits in common. "master" and "feature/implement_voxelizer" have entirely different histories.

8 changed files with 85 additions and 351 deletions

22
LICENSE
View File

@ -1,22 +0,0 @@
MIT License
Copyright (c) [year] [fullname]
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,4 +0,0 @@
# Roctree
This is planned to be an Octree rust crate enabling adaptive refinement for finite element analysis of voxel meshes.
The plan is to also ship a tool that can convert an STL into a voxel volume mesh for further processing by finite element analysis codes.

View File

@ -1,17 +1,6 @@
use core::f64;
use vecmath::vec3_add;
use crate::{errors::RoctreeError, primitives::Box3, stl::parser::StlSolid};
/// Number of potential split planes to check
const NBINS: usize = 8;
/// Struct to hold bin information, this includes an axis-aligned bounding box as well as the count
/// of triangles with the
#[derive(Default, Clone)]
struct Bin {
aabb: Box3,
tri_count: usize,
}
use crate::{primitives::Box3, stl::parser::StlSolid};
/// A node representing a node single in the bounding volume hierarchy
#[derive(Default)]
@ -23,32 +12,30 @@ struct BvhNode {
prim_count: usize,
}
impl BvhNode {
/// This computes the computational cost associated with the specific node.
/// The cost is an aggregate that considers the size of the bounding box (how likely it will
/// intersect a ray) * the number of triangles (the number of ray-triangle checks we have to
/// perform if an intersect occurs)
fn calculate_node_cost(&self) -> f32 {
self.aabb.surface_area() * self.prim_count as f32
}
}
/// Struct representing the total bounding volume hierarchy
pub struct Bvh {
nodes: Vec<BvhNode>,
tri_idx: Vec<usize>,
}
/// Return type for get_subdivision_position_and_axis
struct BestSplitPlane {
struct SplitPlane {
axis: usize,
pos: f64,
cost: f64,
}
impl Bvh {
/// Create a new Bounding volume hierarchy from an STL solid.
pub fn new(solid: &StlSolid) -> Result<Bvh, RoctreeError> {
/// Create a new Bounding volume hierarchy from an STL solid
pub fn new(solid: &StlSolid) -> Self {
// First we need to get all of the triangle centroids
let centroids: Vec<[f32; 3]> = solid
.triangles
.iter()
.map(|tri| {
tri.iter()
.fold([0.0; 3], |acc, idx| vec3_add(solid.vertices[*idx], acc))
})
.collect();
// Initialize the root node
let mut nodes = vec![BvhNode {
prim_idx: 0,
@ -59,205 +46,31 @@ impl Bvh {
.aabb
.shrink_wrap_primitives(&solid.vertices, &solid.triangles);
let mut bvh = Bvh {
nodes,
tri_idx: Vec::from_iter(0..solid.triangles.len()),
};
let mut bvh = Bvh { nodes };
bvh.subdivide(0, solid)?;
Ok(bvh)
bvh.subdivide(0);
bvh
}
/// Subdivide a node, subdivision doesn't occur if the node has only 2 primitives
pub fn subdivide(&mut self, node_idx: usize, solid: &StlSolid) -> Result<(), RoctreeError> {
let BestSplitPlane {
cost,
axis: split_axis,
pos: split_position,
} = self.get_best_split(node_idx, solid)?;
// If the split cost is greater than keeping the node intact just return
if cost > self.nodes[node_idx].calculate_node_cost() as f64 {
return Ok(());
}
let prim_count = self.nodes[node_idx].prim_count;
let prim_idx = self.nodes[node_idx].prim_idx;
// Reorganize the triangles so the triangles are ordered, this allows triangles belonging
// to a specific node to be adjacent
let mut start_idx = prim_idx;
let mut end_idx = prim_idx + prim_count - 1;
while start_idx <= end_idx {
if solid.triangle_centroids[self.tri_idx[start_idx]][split_axis] < split_position as f32
{
start_idx += 1;
} else {
self.tri_idx.swap(start_idx, end_idx);
end_idx -= 1;
}
}
// Now split the primitives into two nodes
let left_count = start_idx - prim_idx;
let right_count = prim_count - left_count;
// If all primitives belong to either the left or right half exit because the parent node
// is a leaf
if left_count == 0 || left_count == prim_count {
return Ok(());
}
// Otherwise split the nodes into left and right child
let left_child = self.nodes.len();
let right_child = self.nodes.len() + 1;
// FIX: Having to copy the [usize; 3] that defines each triangle just to create the
// axis-aligned bounding box seems wasteful although it makes the code interface a lot
// cleaner. Maybe spend some time to redesign this part to make it cleaner once we really
// start focusing on performance tuning
let left_prim_triangles: Vec<_> = (prim_idx..left_count)
.map(|idx| solid.triangles[idx])
.collect();
let mut aabb = Box3::default();
aabb.shrink_wrap_primitives(&solid.vertices, &left_prim_triangles);
self.nodes.push(BvhNode {
aabb,
left_child: 0,
right_child: 0,
prim_idx,
prim_count: left_count,
});
let right_prim_triangles: Vec<_> = ((prim_idx + left_count)..prim_count)
.map(|idx| solid.triangles[idx])
.collect();
let mut aabb = Box3::default();
aabb.shrink_wrap_primitives(&solid.vertices, &right_prim_triangles);
self.nodes.push(BvhNode {
aabb,
left_child: 0,
right_child: 0,
prim_idx: prim_idx + left_count,
prim_count: right_count,
});
self.nodes[node_idx].prim_count = 0;
self.nodes[node_idx].left_child = left_child;
self.nodes[node_idx].right_child = right_child;
// Recurse to divide children
self.subdivide(left_child, solid)?;
self.subdivide(right_child, solid)?;
Ok(())
pub fn subdivide(&mut self, node_idx: usize) {
let split_plane = self.get_split_plane(node_idx);
}
/// Get the best split plane based on the surface area heuristic
/// This procedure works by binning
fn get_best_split(
&self,
node_idx: usize,
solid: &StlSolid,
) -> Result<BestSplitPlane, RoctreeError> {
// Initialize the best split plane information with bad values so we know if no plane gets
// assigned
let mut best_cost = f64::INFINITY;
let mut best_pos = f64::NAN;
// Pick the longest axis as the splitting axis
let axis = self.nodes[node_idx]
.aabb
.get_extents()
.iter()
.enumerate()
.fold((0_usize, &f32::NEG_INFINITY), |acc, a| {
if acc.1 > a.1 {
acc
} else {
a
}
})
.0;
let node = &self.nodes[node_idx];
// Get minimum and maximum bounds over the centroids off the triangles. This improves
// the binning compared to doing the binning over the vertices
let (min_bd, max_bd) = self.tri_idx[node.prim_idx..node.prim_idx + node.prim_count]
.iter()
.fold((f64::INFINITY, f64::NEG_INFINITY), |bounds, tri_idx| {
(
bounds
.0
.min(solid.triangle_centroids[*tri_idx][axis].into()),
bounds
.1
.max(solid.triangle_centroids[*tri_idx][axis].into()),
)
});
if min_bd == max_bd {
return Err(RoctreeError::SplitPlaneError);
};
let mut bins = vec![Bin::default(); NBINS];
let scale = NBINS as f64 / (max_bd - min_bd);
// Assign the triangles to each of the bins
for tri_idx in self.tri_idx[node.prim_idx..node.prim_idx + node.prim_count].iter() {
let bin_index = usize::min(
NBINS - 1,
((solid.triangle_centroids[*tri_idx][axis] as f64 - min_bd) * scale) as usize,
);
bins[bin_index].tri_count += 1;
bins[bin_index]
.aabb
.grow(solid.vertices[solid.triangles[*tri_idx][0]]);
bins[bin_index]
.aabb
.grow(solid.vertices[solid.triangles[*tri_idx][1]]);
bins[bin_index]
.aabb
.grow(solid.vertices[solid.triangles[*tri_idx][2]]);
}
// Now get the left and right counts for each split plane (based on the bins)
let mut left_area = [0.0; NBINS - 1];
let mut right_area = [0.0; NBINS - 1];
let mut left_count = [0; NBINS - 1];
let mut right_count = [0; NBINS - 1];
let mut left_box = Box3::default();
let mut right_box = Box3::default();
let mut left_sum = 0;
let mut right_sum = 0;
for plane_idx in 0..NBINS - 1 {
// Calculate the left side of the plane
left_sum += bins[plane_idx].tri_count;
left_count[plane_idx] = left_sum;
left_box.grow_by_other_box(&bins[plane_idx].aabb);
left_area[plane_idx] = left_box.surface_area();
// Calculate the right side of the plane
right_sum += bins[NBINS - 1 - plane_idx].tri_count;
right_count[NBINS - 2 - plane_idx] = right_sum;
right_box.grow_by_other_box(&bins[NBINS - 1 - plane_idx].aabb);
right_area[NBINS - 2 - plane_idx] = right_box.surface_area();
}
let scale = 1.0 / scale;
for plane_idx in 0..NBINS - 1 {
let plane_cost: f64 = (left_count[plane_idx] as f32 * left_area[plane_idx]
+ right_count[plane_idx] as f32 * right_area[plane_idx])
.into();
if plane_cost < best_cost {
best_cost = plane_cost;
best_pos = scale * plane_idx as f64;
/// Calculate the optimal split plane axis and position.
/// This function should use the surface area heuristic to select the optimal split
fn get_split_plane(&self, node_idx: usize) -> SplitPlane {
// Initial approach just splits halfway along the longest axis
// TODO: Improve this to use the surface area heuristic
let axis = (0..3).fold(0, |acc, a| {
if self.nodes[node_idx].aabb.extents[acc] < self.nodes[node_idx].aabb.extents[a] {
a
} else {
acc
}
}
});
Ok(BestSplitPlane {
axis,
pos: best_pos,
cost: best_cost,
})
let pos = self.nodes[node_idx].aabb.extents[axis] / 2.0;
SplitPlane { axis, pos }
}
}

View File

@ -1,19 +0,0 @@
use std::{error::Error, fmt::Display};
#[derive(Debug)]
pub enum RoctreeError {
SplitPlaneError,
}
impl Error for RoctreeError {}
impl Display for RoctreeError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
RoctreeError::SplitPlaneError => write!(
f,
"Failed to get split plane, centroids overlap along longest axis"
),
}
}
}

View File

@ -1,5 +1,4 @@
pub mod bvh;
pub mod errors;
pub mod octree;
pub mod primitives;
pub mod stl;

View File

@ -1,36 +1,37 @@
use vecmath::vec3_sub;
use std::collections::BTreeSet;
#[derive(Default, Clone)]
use itertools::Itertools;
use vecmath::{vec3_add, vec3_scale};
#[derive(Default)]
pub struct Box3 {
pub min_bd: [f32; 3],
pub max_bd: [f32; 3],
pub center: [f64; 3],
pub extents: [f64; 3],
}
impl Box3 {
/// Create a new box from the bounding values
pub fn new_from_bounds(min_bd: [f32; 3], max_bd: [f32; 3]) -> Self {
Box3 { min_bd, max_bd }
pub fn new_from_bounds(min_bound: [f32; 3], max_bound: [f32; 3]) -> Self {
let mut center = [0.0; 3];
let mut extents = [0.0; 3];
for (i, (min_val, max_val)) in min_bound.iter().zip(max_bound).enumerate() {
center[i] = ((min_val + max_val) / 2.0) as f64;
extents[i] = (max_val - min_val) as f64;
}
Box3 { center, extents }
}
/// This function returns the 8 vertices of an axis-aligned bounding box.
/// These are ordered
/// 7----6
/// | /| /|
/// | 4----5
/// | | 3--| 2
/// | |/ |/
/// | 0----1
pub fn get_vertices(&self) -> Vec<[f32; 3]> {
vec![
self.min_bd,
[self.max_bd[0], self.min_bd[1], self.min_bd[2]],
[self.max_bd[0], self.max_bd[1], self.min_bd[2]],
[self.min_bd[0], self.max_bd[1], self.min_bd[2]],
[self.max_bd[0], self.min_bd[1], self.max_bd[2]],
[self.max_bd[0], self.max_bd[1], self.max_bd[2]],
self.max_bd,
[self.min_bd[0], self.max_bd[1], self.max_bd[2]],
]
pub fn get_vertices(&self) -> Vec<[f64; 3]> {
let half_extent = vec3_scale(self.extents, 0.5);
// Define all eight corners relative to the center.
[-half_extent[0], half_extent[0]]
.into_iter()
.cartesian_product([-half_extent[1], half_extent[1]])
.cartesian_product([-half_extent[2], half_extent[2]])
.map(|((x, y), z)| vec3_add(self.center, [x, y, z]))
.collect()
}
/// Expand a box to fit all primitive inside of it.
@ -42,50 +43,31 @@ impl Box3 {
{
// If the current primitive list is empty, zero bounding box and exit
if primitives.is_empty() {
self.min_bd = [0.0; 3];
self.max_bd = [0.0; 3];
return;
self.center = [0.0; 3];
self.extents = [0.0; 3]
}
// Get all of the unique vertex indices so we don't have to check them multiple times
let unique_vertex_idxs: BTreeSet<&usize> = BTreeSet::from_iter(primitives.iter().flatten());
for vertex_idx in primitives.iter().flatten() {
self.grow(vertices[*vertex_idx]);
}
}
// Now expand the box
let mut min_bd = [f32::INFINITY; 3];
let mut max_bd = [f32::NEG_INFINITY; 3];
/// Compute the surface area of a box
pub fn surface_area(&self) -> f32 {
let extents = vec3_sub(self.max_bd, self.min_bd);
extents[0] * extents[1] + extents[1] * extents[2] + extents[2] * extents[0]
}
/// Get the extents of the current box
#[inline(always)]
pub fn get_extents(&self) -> [f32; 3] {
vec3_sub(self.max_bd, self.min_bd)
}
/// Grow the axis aligned bounding box to include a specific vertex
#[inline(always)]
pub fn grow(&mut self, vertex: [f32; 3]) {
for (axis, pos) in vertex.iter().enumerate() {
self.min_bd[axis] = self.min_bd[axis].min(*pos);
self.max_bd[axis] = self.max_bd[axis].min(*pos);
}
}
/// Grow the axis aligned bounding box to include a min and max boundary
/// This is useful when trying to combine two bounding boxes
#[inline(always)]
pub fn grow_by_other_box(&mut self, other: &Self) {
for axis in 0..3 {
self.min_bd[axis] = self.min_bd[axis].min(other.min_bd[axis]);
self.max_bd[axis] = self.max_bd[axis].max(other.max_bd[axis]);
for idx in unique_vertex_idxs.into_iter() {
for ((vertex_pos, min_pos), max_pos) in vertices[*idx]
.iter()
.zip(min_bd.iter_mut())
.zip(max_bd.iter_mut())
{
*min_pos = vertex_pos.min(*min_pos);
*max_pos = vertex_pos.max(*max_pos);
}
}
}
}
pub struct Triangle {
pub v1: [f32; 3],
pub v2: [f32; 3],
pub v3: [f32; 3],
pub v1: [f64; 3],
pub v2: [f64; 3],
pub v3: [f64; 3],
}

View File

@ -4,7 +4,6 @@ use std::collections::HashMap;
use std::fs::File;
use std::io::{BufRead, BufReader, Read};
use std::path::Path;
use vecmath::vec3_add;
/// Representation of an STL mesh
/// Vertices are stored in vec with repeat vertices removed. Each vertex is represented as an
@ -13,7 +12,6 @@ use vecmath::vec3_add;
pub struct StlSolid {
pub vertices: Vec<[f32; 3]>,
pub triangles: Vec<[usize; 3]>,
pub triangle_centroids: Vec<[f32; 3]>,
pub normals: Vec<[f32; 3]>,
}
@ -112,11 +110,9 @@ pub fn parse_ascii_stl(file_path: &impl AsRef<Path>) -> Result<StlSolid> {
];
}
let triangle_centroids = calc_triangle_centroids(&vertices, &triangles);
Ok(StlSolid {
vertices,
triangles,
triangle_centroids,
normals,
})
}
@ -187,26 +183,13 @@ pub fn parse_binary_stl(file_path: &impl AsRef<Path>) -> Result<StlSolid> {
triangles.push(indices);
}
let triangle_centroids = calc_triangle_centroids(&vertices, &triangles);
Ok(StlSolid {
vertices,
triangles,
triangle_centroids,
normals,
})
}
/// Calculate the centroids for each triangle in a list
fn calc_triangle_centroids(vertices: &[[f32; 3]], triangles: &[[usize; 3]]) -> Vec<[f32; 3]> {
triangles
.iter()
.map(|tri| {
tri.iter()
.fold([0.0; 3], |acc, idx| vec3_add(vertices[*idx], acc))
})
.collect()
}
#[cfg(test)]
pub mod test {
use super::*;

View File

@ -1,3 +1,5 @@
use core::f64;
use vecmath::{vec3_cross, vec3_dot, vec3_sub};
use crate::primitives::{Box3, Triangle};
@ -26,19 +28,19 @@ pub fn tri_aabb_intersect(bx: &Box3, tri: &Triangle) -> bool {
let box_projection = project_pnts(&box_vertices, axis);
let tri_projection = project_pnts(&[tri.v1, tri.v2, tri.v3], axis);
let start = f32::max(box_projection.0, tri_projection.0);
let end = f32::min(box_projection.1, tri_projection.1);
let start = f64::max(box_projection.0, tri_projection.0);
let end = f64::min(box_projection.1, tri_projection.1);
if start < end {
return false;
}
}
true
return true;
}
/// Project points unto an Axis and return the max and min
fn project_pnts(pnts: &[[f32; 3]], axis: [f32; 3]) -> (f32, f32) {
let mut min_proj = f32::INFINITY;
let mut max_proj = f32::NEG_INFINITY;
fn project_pnts(pnts: &[[f64; 3]], axis: [f64; 3]) -> (f64, f64) {
let mut min_proj = f64::INFINITY;
let mut max_proj = f64::NEG_INFINITY;
for pnt in pnts {
let projection = vec3_dot(axis, *pnt);
min_proj = min_proj.min(projection);