use core::f64; use vecmath::{vec3_cross, vec3_dot, vec3_sub}; use crate::primitives::{Box3, Triangle}; /// Determine whether two shapes interesect using the separating axis theorem pub fn tri_aabb_intersect(bx: &Box3, tri: &Triangle) -> bool { // Get edge vectors for triangle let e1 = vec3_sub(tri.v2, tri.v1); let e2 = vec3_sub(tri.v3, tri.v2); let e3 = vec3_sub(tri.v1, tri.v3); // Get face and edge normals let tri_face = vec3_cross(e1, e2); let n1 = vec3_cross(e1, e1); let n2 = vec3_cross(e2, e1); let n3 = vec3_cross(e3, e1); // Face normals AABB let u0 = [1.0, 0.0, 0.0]; let u1 = [0.0, 1.0, 0.0]; let u2 = [0.0, 0.0, 1.0]; // Now check all of the axes let box_vertices = bx.get_vertices(); for axis in [u0, u1, u2, tri_face, n1, n2, n3] { let box_projection = project_pnts(&box_vertices, axis); let tri_projection = project_pnts(&[tri.v1, tri.v2, tri.v3], axis); let start = f64::max(box_projection.0, tri_projection.0); let end = f64::min(box_projection.1, tri_projection.1); if start < end { return false; } } return true; } /// Project points unto an Axis and return the max and min fn project_pnts(pnts: &[[f64; 3]], axis: [f64; 3]) -> (f64, f64) { let mut min_proj = f64::INFINITY; let mut max_proj = f64::NEG_INFINITY; for pnt in pnts { let projection = vec3_dot(axis, *pnt); min_proj = min_proj.min(projection); max_proj = max_proj.max(projection); } (min_proj, max_proj) }