Add Adam optimizer, move traits around, and fix issue with conjugate gradient

master
Alex Selimov 6 days ago
parent c9205415f2
commit 2993580861

@ -0,0 +1,161 @@
use crate::{
gradient_descent::consts::EPS,
minimize::{ExitCondition, OptimizationResult},
objective_function::ObjectiveFun,
traits::XVar,
};
use std::fmt::Debug;
use super::conjugate_gradient::ConjGradPrime;
pub struct AdamParameters {
alpha0: f64,
beta1: f64,
beta2: f64,
}
pub trait AdamPrime: ConjGradPrime {
fn zero(&self) -> Self;
fn sqrt(&self) -> Self;
}
impl AdamPrime for f64 {
fn zero(&self) -> Self {
0.0
}
fn sqrt(&self) -> Self {
f64::sqrt(*self)
}
}
impl AdamPrime for Vec<f64> {
fn zero(&self) -> Self {
(0..self.len()).map(|_| 0.0).collect()
}
fn sqrt(&self) -> Self {
self.iter().map(|val| val.sqrt()).collect()
}
}
pub fn adam<T: XVar<E> + Clone, E: Debug + AdamPrime>(
fun: &dyn ObjectiveFun<T, E>,
x0: &T,
max_iters: usize,
tolerance: f64,
params: &AdamParameters,
) -> OptimizationResult<T> {
// Make a mutable copy of x0 to work with
let mut xs = x0.clone();
// Perform the iteration
let mut t = 0;
let mut prime = fun.prime(x0);
let mut m = prime.zero();
let mut v = prime.zero();
let mut old_f = fun.eval(x0);
let mut f = old_f;
for _ in 0..max_iters {
// Do an adam step
m = m.scale(params.beta1).add(&prime.scale(1.0 - params.beta1));
v = (v.scale(params.beta2)).add(&prime.mul(&prime.scale(1.0 - params.beta2)));
let mhat = m.scale(1.0 / (1.0 - params.beta1.powi(t as i32 + 1)));
let vhat = v.scale(1.0 / (1.0 - params.beta2.powi(t as i32 + 1)));
let update_direction = mhat.div(&vhat.sqrt().add_float(EPS)).scale(-1.0);
xs = xs.update(params.alpha0, &update_direction);
prime = fun.prime(&xs);
// Check convergence
f = fun.eval(&xs);
if f.is_nan() {
break;
}
if (f - old_f).abs() < tolerance {
break;
}
old_f = f;
t += 1;
}
let exit_con = if t == max_iters {
ExitCondition::MaxIter
} else {
ExitCondition::Converged
};
OptimizationResult {
best_xs: xs,
best_fun_val: f,
exit_con,
iters: t,
}
}
#[cfg(test)]
mod test {
use crate::objective_function::Fun;
use super::*;
#[test]
pub fn simple_adam_test() {
let fun = Box::new(|xs: &Vec<f64>| xs.iter().fold(0.0, |acc, x| acc + x.powi(2)));
let prime = Box::new(|xs: &Vec<f64>| xs.iter().map(|x| 2.0 * x).collect());
let obj = Fun::new(fun, prime);
let params = AdamParameters {
alpha0: 0.1,
beta1: 0.9,
beta2: 0.999,
};
let res = adam(&obj, &vec![10.0, 10.0], 1000, 1e-12, &params);
println!(
"Best val is {:?} for xs {:?}",
res.best_fun_val, res.best_xs
);
println!("Exitted with {:?}", res.exit_con);
if let ExitCondition::MaxIter = res.exit_con {
panic!("Failed to converge to minima");
}
println!(
"{:?} on iteration {} has value:\n{}",
res.best_xs, res.iters, res.best_fun_val
);
assert!(res.best_fun_val < 1e-8);
}
#[test]
pub fn basic_beale_test() {
let fun = Box::new(|x: &Vec<f64>| {
(1.5 - x[0] + x[0] * x[1]).powi(2)
+ (2.25 - x[0] + x[0] * x[1].powi(2)).powi(2)
+ (2.625 - x[0] + x[0] * x[1].powi(3)).powi(2)
});
let prime = Box::new(|x: &Vec<f64>| {
vec![
2.0 * (1.5 - x[0] + x[0] * x[1]) * (x[1] - 1.0)
+ 2.0 * (2.25 - x[0] + x[0] * x[1].powi(2)) * (x[1].powi(2) - 1.0)
+ 2.0 * (2.625 - x[0] + x[0] * x[1].powi(3)) * (x[1].powi(3) - 1.0),
2.0 * (1.5 - x[0] + x[0] * x[1]) * (x[0])
+ 2.0 * (2.25 - x[0] + x[0] * x[1].powi(2)) * (2.0 * x[0] * x[1])
+ 2.0 * (2.625 - x[0] + x[0] * x[1].powi(3)) * (3.0 * x[0] * x[1].powi(3)),
]
});
let obj = Fun::new(fun, prime);
let params = AdamParameters {
alpha0: 0.1,
beta1: 0.9,
beta2: 0.999,
};
let res = adam(&obj, &vec![4.0, 1.00], 1000, 1e-12, &params);
println!(
"Best val is {:?} for xs {:?} in {} iterations",
res.best_fun_val, res.best_xs, res.iters
);
println!("Exit condition is: {:?}", res.exit_con);
assert!(res.best_fun_val < 1e-7);
}
}

@ -1,14 +1,15 @@
use crate::{
gradient_descent::consts::EPS,
minimize::{ExitCondition, OptimizationResult},
objective_function::ObjectiveFun,
traits::XVar,
};
use std::fmt::Debug;
use super::line_search::LineSearch;
use super::{line_search::LineSearch, steepest_descent::SteepestDescentPrime};
/// Trait that should be implemented by the Prime type for conjugate gradient
pub trait ConjGradPrime: Clone + Debug {
pub trait ConjGradPrime: Clone + Debug + SteepestDescentPrime {
/// Multiply primes by each other
fn mul(&self, rhs: &Self) -> Self;
/// Subtract primes from each other
@ -19,6 +20,8 @@ pub trait ConjGradPrime: Clone + Debug {
fn div(&self, denominator: &Self) -> Self;
/// Max between the prime and a float
fn max(&self, rhs: f64) -> Self;
/// Add a float to the prime
fn add_float(&self, rhs: f64) -> Self;
}
impl ConjGradPrime for f64 {
@ -41,6 +44,10 @@ impl ConjGradPrime for f64 {
fn add(&self, rhs: &Self) -> Self {
self + rhs
}
fn add_float(&self, rhs: f64) -> Self {
self + rhs
}
}
impl ConjGradPrime for Vec<f64> {
@ -72,9 +79,13 @@ impl ConjGradPrime for Vec<f64> {
fn add(&self, rhs: &Self) -> Self {
self.iter()
.zip(rhs.iter())
.map(|(lhs, rhs)| lhs - rhs)
.map(|(lhs, rhs)| lhs + rhs)
.collect()
}
fn add_float(&self, rhs: f64) -> Self {
self.iter().map(|val| val + rhs).collect()
}
}
pub fn conjugate_gradient<T: XVar<E> + Clone, E: Debug + ConjGradPrime>(
@ -92,7 +103,7 @@ pub fn conjugate_gradient<T: XVar<E> + Clone, E: Debug + ConjGradPrime>(
let mut f = 0.0;
let mut i = 0;
let mut prev_residual = fun.prime(&xs);
let mut direction = T::scale_prime(&prev_residual, -1.0);
let mut direction = prev_residual.scale(-1.0);
for _ in 0..max_iters {
let learning_rate = line_search.get_learning_rate(fun, &xs, &direction);
xs = xs.update(learning_rate, &direction);
@ -105,11 +116,11 @@ pub fn conjugate_gradient<T: XVar<E> + Clone, E: Debug + ConjGradPrime>(
}
// Update using polack-ribiere
let new_residual = T::scale_prime(&fun.prime(&xs), -1.0);
let new_residual = fun.prime(&xs).scale(-1.0);
let beta = (new_residual.mul(&new_residual.sub(&prev_residual)))
.div(&prev_residual.mul(&prev_residual));
.div(&prev_residual.mul(&prev_residual).add_float(EPS));
let beta = beta.max(0.0);
direction = new_residual.add(&beta.mul(&direction));
direction = new_residual.sub(&beta.mul(&direction));
prev_residual = new_residual.clone();
i += 1;
}
@ -140,8 +151,8 @@ mod test {
let obj = Fun::new(fun, prime);
let line_searches = vec![LineSearch::BackTrack {
gamma: 0.9,
c: 0.01,
gamma: 0.5,
c: 0.001,
}];
for line_search in line_searches {
let res = conjugate_gradient(&obj, &vec![20.0, 20.0], 1000, 1e-12, &line_search);
@ -185,10 +196,10 @@ mod test {
gamma: 0.9,
c: 0.01,
};
let res = conjugate_gradient(&obj, &vec![4.0, 1.00], 10000, 1e-12, &line_search);
let res = conjugate_gradient(&obj, &vec![4.0, 1.00], 1000, 1e-12, &line_search);
println!(
"Best val is {:?} for xs {:?}",
res.best_fun_val, res.best_xs
"Best val is {:?} for xs {:?} in {} iterations",
res.best_fun_val, res.best_xs, res.iters
);
println!("Exit condition is: {:?}", res.exit_con);

@ -0,0 +1 @@
pub const EPS: f64 = 1e-12;

@ -2,6 +2,8 @@ use core::fmt;
use crate::{objective_function::ObjectiveFun, traits::XVar};
use super::steepest_descent::SteepestDescentPrime;
pub enum LineSearch {
ConstAlpha { learning_rate: f64 },
BackTrack { gamma: f64, c: f64 },
@ -16,7 +18,7 @@ impl LineSearch {
) -> f64
where
T: XVar<E> + Clone,
E: fmt::Debug,
E: fmt::Debug + SteepestDescentPrime,
{
match self {
LineSearch::ConstAlpha { learning_rate } => *learning_rate,
@ -25,10 +27,7 @@ impl LineSearch {
let fk = fun.eval(xs);
let mut new_f = fun.eval(&xs.update(1.0, &prime));
let mut t = 1.0;
while fk
< new_f
+ t * c * T::prime_inner_product(&T::scale_prime(&prime, -1.0), direction)
{
while fk < new_f + t * c * prime.scale(-1.0).inner_product(direction) {
t *= gamma;
let new_x = xs.update(t, direction);
new_f = fun.eval(&new_x);

@ -1,4 +1,6 @@
pub mod adam;
pub mod base;
pub mod conjugate_gradient;
pub mod consts;
pub mod line_search;
pub mod steepest_descent;

@ -3,10 +3,37 @@ use crate::{
objective_function::ObjectiveFun,
traits::XVar,
};
use std::fmt::Debug;
use super::line_search::LineSearch;
pub fn steepest_descent<T: XVar<E> + Clone, E: std::fmt::Debug>(
pub trait SteepestDescentPrime {
fn scale(&self, factor: f64) -> Self;
fn inner_product(&self, rhs: &Self) -> f64;
}
impl SteepestDescentPrime for f64 {
fn scale(&self, factor: f64) -> Self {
self * factor
}
fn inner_product(&self, rhs: &Self) -> f64 {
self * rhs
}
}
impl SteepestDescentPrime for Vec<f64> {
fn scale(&self, factor: f64) -> Self {
self.iter().map(|val| val * factor).collect()
}
fn inner_product(&self, rhs: &Self) -> f64 {
self.iter()
.zip(rhs)
.fold(0.0, |acc, (lhs, rhs)| acc + lhs * rhs)
}
}
pub fn steepest_descent<T: XVar<E> + Clone, E: Debug + SteepestDescentPrime>(
fun: &dyn ObjectiveFun<T, E>,
x0: &T,
max_iters: usize,
@ -21,9 +48,9 @@ pub fn steepest_descent<T: XVar<E> + Clone, E: std::fmt::Debug>(
let mut f = 0.0;
let mut i = 0;
for _ in 0..max_iters {
let direction = T::scale_prime(&fun.prime(&xs), -1.0);
let learning_rate = line_search.get_learning_rate(fun, &xs, &direction);
xs = xs.update(learning_rate, &direction);
let direction = &fun.prime(&xs).scale(-1.0);
let learning_rate = line_search.get_learning_rate(fun, &xs, direction);
xs = xs.update(learning_rate, direction);
f = fun.eval(&xs);
if (f - f_iminus1).abs() < tolerance {
break;
@ -62,7 +89,10 @@ mod test {
LineSearch::ConstAlpha {
learning_rate: 0.25,
},
LineSearch::BackTrack { gamma: 0.9, c: 0.3 },
LineSearch::BackTrack {
gamma: 0.5,
c: 0.001,
},
];
for line_search in line_searches {
let res = steepest_descent(&obj, &vec![20.0, 20.0], 1000, 1e-12, &line_search);
@ -102,8 +132,8 @@ mod test {
};
let res = steepest_descent(&obj, &vec![3.1, 0.5], 10000, 1e-12, &line_search);
println!(
"Best val is {:?} for xs {:?}",
res.best_fun_val, res.best_xs
"Best val is {:?} for xs {:?} in {} iterations",
res.best_fun_val, res.best_xs, res.iters,
);
assert!(res.best_fun_val < 1e-7);
}

@ -9,12 +9,6 @@ use std::fmt::Debug;
pub trait XVar<T>: Clone + Debug {
/// Update the current Xvariable based on the prime
fn update(&self, alpha: f64, prime: &T) -> Self;
/// Multiply the prime by a float
fn scale_prime(prime: &T, rhs: f64) -> T;
/// Add a float to the prime
fn add_prime(prime: &T, rhs: f64) -> T;
/// Inner Product of prime
fn prime_inner_product(prime: &T, rhs: &T) -> f64;
}
/// Implementation of XVar for an f64 type
@ -22,18 +16,6 @@ impl XVar<f64> for f64 {
fn update(&self, alpha: f64, prime: &f64) -> Self {
self + alpha * prime
}
fn scale_prime(prime: &f64, rhs: f64) -> f64 {
prime * rhs
}
fn add_prime(prime: &f64, rhs: f64) -> f64 {
prime + rhs
}
fn prime_inner_product(prime: &f64, rhs: &f64) -> f64 {
prime * rhs
}
}
/// Implementation of XVar for a Vec<f64> type
@ -44,19 +26,4 @@ impl XVar<Vec<f64>> for Vec<f64> {
.map(|(x, xprime)| x + alpha * xprime)
.collect()
}
fn scale_prime(prime: &Vec<f64>, rhs: f64) -> Vec<f64> {
prime.iter().map(|val| val * rhs).collect()
}
fn add_prime(prime: &Vec<f64>, rhs: f64) -> Vec<f64> {
prime.iter().map(|val| val + rhs).collect()
}
fn prime_inner_product(prime: &Vec<f64>, rhs: &Vec<f64>) -> f64 {
prime
.iter()
.zip(rhs.iter())
.fold(0.0, |acc, a| acc + a.0 * a.1)
}
}

Loading…
Cancel
Save