Compiling version of backtracking line search, needs debugging
This commit is contained in:
parent
9e6d750c2d
commit
42e9b748dd
@ -1,12 +1,49 @@
|
||||
use crate::{objective_function::ObjectiveFun, traits::XVar};
|
||||
|
||||
pub enum LineSearch {
|
||||
ConstAlpha { learning_rate: f64 },
|
||||
ConstAlpha {
|
||||
learning_rate: f64,
|
||||
},
|
||||
BackTrack {
|
||||
max_iterations: usize,
|
||||
gamma: f64,
|
||||
c: f64,
|
||||
},
|
||||
}
|
||||
|
||||
impl LineSearch {
|
||||
pub fn get_learning_rate(&self) -> f64 {
|
||||
pub fn get_learning_rate<T, E>(
|
||||
&self,
|
||||
fun: &dyn ObjectiveFun<T, E>,
|
||||
xs: &T,
|
||||
direction: &E,
|
||||
) -> f64
|
||||
where
|
||||
T: XVar<E> + Clone,
|
||||
E:,
|
||||
{
|
||||
match self {
|
||||
LineSearch::ConstAlpha { learning_rate } => *learning_rate,
|
||||
LineSearch::BackTrack {
|
||||
max_iterations,
|
||||
gamma,
|
||||
c,
|
||||
} => {
|
||||
let prime = fun.prime(xs);
|
||||
let mut del_f = T::scale_prime(&prime, *c);
|
||||
let mut new_f = fun.eval(&xs.update(-1.0, &prime));
|
||||
let mut t = 1.0;
|
||||
for i in 0..*max_iterations {
|
||||
if new_f > T::prime_inner_product(&T::scale_prime(&del_f, t), direction) {
|
||||
break;
|
||||
}
|
||||
t *= gamma;
|
||||
let new_x = xs.update(-t, &prime);
|
||||
new_f = fun.eval(&new_x);
|
||||
del_f = fun.prime(&new_x);
|
||||
}
|
||||
t
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -23,7 +23,7 @@ pub fn steepest_descent<T: XVar<E> + Clone, E>(
|
||||
let mut i = 0;
|
||||
for _ in 0..max_iters {
|
||||
let primes = fun.prime(&xs);
|
||||
let learning_rate = line_search.get_learning_rate(fun, &xs);
|
||||
let learning_rate = line_search.get_learning_rate(fun, &xs, &T::scale_prime(&primes, -1.0));
|
||||
xs = xs.update(direction * learning_rate, &primes);
|
||||
f = fun.eval(&xs);
|
||||
|
||||
@ -60,18 +60,27 @@ mod test {
|
||||
let prime = Box::new(|xs: &Vec<f64>| xs.iter().map(|x| 2.0 * x).collect());
|
||||
|
||||
let obj = Fun::new(fun, prime);
|
||||
let line_search = LineSearch::ConstAlpha {
|
||||
learning_rate: 0.25,
|
||||
};
|
||||
let res = steepest_descent(&obj, &vec![20.0], 1000, 1e-12, &line_search, -1.0);
|
||||
let line_searches = vec![
|
||||
LineSearch::ConstAlpha {
|
||||
learning_rate: 0.25,
|
||||
},
|
||||
LineSearch::BackTrack {
|
||||
max_iterations: 100,
|
||||
gamma: 0.5,
|
||||
c: 0.1,
|
||||
},
|
||||
];
|
||||
for line_search in line_searches {
|
||||
let res = steepest_descent(&obj, &vec![20.0], 1000, 1e-12, &line_search, -1.0);
|
||||
|
||||
if let ExitCondition::MaxIter = res.exit_con {
|
||||
panic!("Failed to converge to minima");
|
||||
if let ExitCondition::MaxIter = res.exit_con {
|
||||
panic!("Failed to converge to minima");
|
||||
}
|
||||
println!(
|
||||
"{:?} on iteration {}\n{}",
|
||||
res.best_xs, res.iters, res.best_fun_val
|
||||
);
|
||||
assert!(res.best_fun_val < 1e-8);
|
||||
}
|
||||
println!(
|
||||
"{:?} on iteration {}\n{}",
|
||||
res.best_xs, res.iters, res.best_fun_val
|
||||
);
|
||||
assert!(res.best_fun_val < 1e-8);
|
||||
}
|
||||
}
|
||||
|
@ -1,9 +1,18 @@
|
||||
/// Trait defining the data structure that must be implemented for the independent variables used
|
||||
/// in the objective function. The generic type denotes the type of the prime of that variable
|
||||
///
|
||||
/// NOTE: This trait also defines some functions that are required to operate on the prime data
|
||||
/// type. It should be noted that we are unable to just require T to implement Mul<f64> or Add<f64>
|
||||
/// Bbecause then we wouldn't be able to implement XVar for plain Vec types which seems
|
||||
/// inconvenient
|
||||
pub trait XVar<T>: Clone {
|
||||
/// Update the current Xvariable based on the prime
|
||||
fn update(&self, alpha: f64, prime: &T) -> Self;
|
||||
/// Multiply the prime by a float
|
||||
fn scale_prime(prime: &T, rhs: f64) -> T;
|
||||
/// Add a float to the prime
|
||||
fn add_prime(prime: &T, rhs: f64) -> T;
|
||||
/// Inner Produce
|
||||
fn prime_inner_product(prime: &T, rhs: &T) -> f64;
|
||||
}
|
||||
|
||||
/// Implementation of XVar for an f64 type
|
||||
@ -11,6 +20,18 @@ impl XVar<f64> for f64 {
|
||||
fn update(&self, alpha: f64, prime: &f64) -> Self {
|
||||
self + alpha * prime
|
||||
}
|
||||
|
||||
fn scale_prime(prime: &f64, rhs: f64) -> f64 {
|
||||
prime * rhs
|
||||
}
|
||||
|
||||
fn add_prime(prime: &f64, rhs: f64) -> f64 {
|
||||
prime + rhs
|
||||
}
|
||||
|
||||
fn prime_inner_product(prime: &f64, rhs: &f64) -> f64 {
|
||||
prime * rhs
|
||||
}
|
||||
}
|
||||
|
||||
/// Implementation of XVar for a Vec<f64> type
|
||||
@ -21,4 +42,19 @@ impl XVar<Vec<f64>> for Vec<f64> {
|
||||
.map(|(x, xprime)| x + alpha * xprime)
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn scale_prime(prime: &Vec<f64>, rhs: f64) -> Vec<f64> {
|
||||
prime.iter().map(|val| val * rhs).collect()
|
||||
}
|
||||
|
||||
fn add_prime(prime: &Vec<f64>, rhs: f64) -> Vec<f64> {
|
||||
prime.iter().map(|val| val + rhs).collect()
|
||||
}
|
||||
|
||||
fn prime_inner_product(prime: &Vec<f64>, rhs: &Vec<f64>) -> f64 {
|
||||
prime
|
||||
.iter()
|
||||
.zip(rhs.iter())
|
||||
.fold(0.0, |acc, a| acc + a.0 * a.1)
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user