Setup code architecture, some basic traits and types, and steepest descent algorithm

master
Alex Selimov 1 week ago
parent d998a034a3
commit f9bc5adb71

@ -0,0 +1,12 @@
pub enum LineSearch {
ConstAlpha { learning_rate: f64 },
}
impl LineSearch {
pub fn get_learning_rate(&self) -> f64 {
match self {
LineSearch::ConstAlpha { learning_rate } => *learning_rate,
}
}
}

@ -0,0 +1,2 @@
pub mod line_search;
pub mod steepest_descent;

@ -0,0 +1,79 @@
use crate::{
minimize::{Direction, ExitCondition, OptimizationResult},
objective_function::ObjectiveFun,
traits::XVar,
};
use super::line_search::LineSearch;
pub fn steepest_descent<T: XVar<E> + Clone, E>(
fun: &dyn ObjectiveFun<T, E>,
x0: &[T],
max_iters: usize,
tolerance: f64,
line_search: &LineSearch,
direction: f64,
) -> OptimizationResult<T> {
// Make a mutable copy of x0 to work with
let mut xs = Vec::new();
xs.extend_from_slice(x0);
// Perform the iteration
let mut f_iminus1 = f64::INFINITY;
let mut f = 0.0;
let mut i = 0;
for _ in 0..max_iters {
let primes = fun.prime(&xs);
xs.iter_mut().zip(primes.iter()).for_each(|(x, prime)| {
*x = x.update(direction * line_search.get_learning_rate(), prime)
});
f = fun.eval(&xs);
if (f - f_iminus1).abs() < tolerance {
break;
} else {
f_iminus1 = f;
}
i += 1;
}
let exit_con = if i == max_iters {
ExitCondition::MaxIter
} else {
ExitCondition::Converged
};
OptimizationResult {
best_xs: xs,
best_fun_val: f,
exit_con,
iters: i,
}
}
#[cfg(test)]
mod test {
use crate::objective_function::Fun;
use super::*;
#[test]
pub fn simple_steepest_descent_test() {
let fun = Box::new(|xs: &[f64]| xs.iter().fold(0.0, |acc, x| acc + x.powi(2)));
let prime = Box::new(|xs: &[f64]| xs.iter().copied().collect::<Vec<f64>>());
let obj = Fun::new(fun, prime);
let line_search = LineSearch::ConstAlpha {
learning_rate: 0.25,
};
let res = steepest_descent(&obj, &[20.0], 1000, 1e-12, &line_search, -1.0);
if let ExitCondition::MaxIter = res.exit_con {
panic!("Failed to converge to minima");
}
println!(
"{:?} on iteration {}\n{}",
res.best_xs, res.iters, res.best_fun_val
);
assert!(res.best_fun_val < 1e-8);
}
}

@ -0,0 +1,5 @@
pub mod gradient_descent;
pub mod heuristics;
pub mod minimize;
pub mod objective_function;
pub mod traits;

@ -0,0 +1,28 @@
/// Result Enum dictating the exit condition for an optimization call
pub enum ExitCondition {
/// Optimization has converged to user specified tolerance
Converged,
/// Optimization has exceeded user specified max iteration count
MaxIter,
}
pub enum Direction {
Minimize,
Maximize,
}
impl Direction {
pub fn factor(&self) -> f64 {
match self {
Direction::Minimize => -1.0,
Direction::Maximize => 1.0,
}
}
}
/// Struct holding the results for a minimization call
pub struct OptimizationResult<T> {
pub best_xs: Vec<T>,
pub best_fun_val: f64,
pub exit_con: ExitCondition,
pub iters: usize,
}

@ -0,0 +1,84 @@
use crate::traits::XVar;
/// Trait that should be implemented for objects that will be minimzed
pub trait ObjectiveFun<T: XVar<E> + Clone, E> {
/// Return the objective function value at a specified coordinate
fn eval(&self, xs: &[T]) -> f64;
/// Return the gradients of the objective function value for specified coordinates
fn prime(&self, xs: &[T]) -> Vec<E>;
}
/// Enum allowing for selection of style of numerical differentiation
pub enum DiffStyle {
ForwardDifference,
BackwardDifference,
CentralDifference,
}
/// Struct that wraps a lambda and provides a numerical derivative for it for use in gradient
/// descent algorithms
pub struct FunWithNumericalDiff {
function: Box<dyn Fn(&[f64]) -> f64>,
dx: f64,
style: DiffStyle,
}
impl ObjectiveFun<f64, f64> for FunWithNumericalDiff {
fn eval(&self, xs: &[f64]) -> f64 {
(self.function)(xs)
}
fn prime(&self, xs: &[f64]) -> Vec<f64> {
let mut xs_local = Vec::new();
xs_local.extend_from_slice(xs);
let f: Box<dyn FnMut((usize, &f64)) -> f64> = match self.style {
DiffStyle::ForwardDifference => Box::new(move |(i, x)| -> f64 {
xs_local[i] = x + self.dx;
let xprime = ((self.function)(&xs_local) - (self.function)(xs)) / (self.dx);
xs_local[i] = *x;
xprime
}),
DiffStyle::BackwardDifference => Box::new(move |(i, x)| -> f64 {
xs_local[i] = x - self.dx;
let xprime = ((self.function)(xs) - (self.function)(&xs_local)) / (self.dx);
xs_local[i] = *x;
xprime
}),
DiffStyle::CentralDifference => Box::new(move |(i, x)| -> f64 {
xs_local[i] = x - (0.5 * self.dx);
let f1 = (self.function)(&xs_local);
xs_local[i] = x + (0.5 * self.dx);
let f2 = (self.function)(&xs_local);
xs_local[i] = *x;
(f2 - f1) / self.dx
}),
};
xs.iter().enumerate().map(f).collect()
}
}
/// Struct that wraps two lambda with one providing the objective function evaluation and the other
/// providing the gradient value
pub struct Fun<T: XVar<E>, E> {
function: Box<dyn Fn(&[T]) -> f64>,
prime: Box<dyn Fn(&[T]) -> Vec<E>>,
}
// Simple type to remove the generics
pub type F64Fun = Fun<f64, f64>;
impl<T: XVar<E>, E> ObjectiveFun<T, E> for Fun<T, E> {
fn eval(&self, xs: &[T]) -> f64 {
(self.function)(xs)
}
fn prime(&self, xs: &[T]) -> Vec<E> {
(self.prime)(xs)
}
}
impl<T: XVar<E>, E> Fun<T, E> {
pub fn new(function: Box<dyn Fn(&[T]) -> f64>, prime: Box<dyn Fn(&[T]) -> Vec<E>>) -> Self {
Fun { function, prime }
}
}

@ -0,0 +1,10 @@
pub trait XVar<E>: Clone {
fn update(&self, alpha: f64, prime: &E) -> Self;
}
/// Implementation of XVar for an f64 type
impl XVar<f64> for f64 {
fn update(&self, alpha: f64, prime: &f64) -> Self {
self + alpha * prime
}
}
Loading…
Cancel
Save