parent
d998a034a3
commit
f9bc5adb71
@ -0,0 +1,12 @@
|
|||||||
|
pub enum LineSearch {
|
||||||
|
ConstAlpha { learning_rate: f64 },
|
||||||
|
}
|
||||||
|
|
||||||
|
impl LineSearch {
|
||||||
|
pub fn get_learning_rate(&self) -> f64 {
|
||||||
|
match self {
|
||||||
|
LineSearch::ConstAlpha { learning_rate } => *learning_rate,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,2 @@
|
|||||||
|
pub mod line_search;
|
||||||
|
pub mod steepest_descent;
|
@ -0,0 +1,79 @@
|
|||||||
|
use crate::{
|
||||||
|
minimize::{Direction, ExitCondition, OptimizationResult},
|
||||||
|
objective_function::ObjectiveFun,
|
||||||
|
traits::XVar,
|
||||||
|
};
|
||||||
|
|
||||||
|
use super::line_search::LineSearch;
|
||||||
|
|
||||||
|
pub fn steepest_descent<T: XVar<E> + Clone, E>(
|
||||||
|
fun: &dyn ObjectiveFun<T, E>,
|
||||||
|
x0: &[T],
|
||||||
|
max_iters: usize,
|
||||||
|
tolerance: f64,
|
||||||
|
line_search: &LineSearch,
|
||||||
|
direction: f64,
|
||||||
|
) -> OptimizationResult<T> {
|
||||||
|
// Make a mutable copy of x0 to work with
|
||||||
|
let mut xs = Vec::new();
|
||||||
|
xs.extend_from_slice(x0);
|
||||||
|
|
||||||
|
// Perform the iteration
|
||||||
|
let mut f_iminus1 = f64::INFINITY;
|
||||||
|
let mut f = 0.0;
|
||||||
|
let mut i = 0;
|
||||||
|
for _ in 0..max_iters {
|
||||||
|
let primes = fun.prime(&xs);
|
||||||
|
xs.iter_mut().zip(primes.iter()).for_each(|(x, prime)| {
|
||||||
|
*x = x.update(direction * line_search.get_learning_rate(), prime)
|
||||||
|
});
|
||||||
|
f = fun.eval(&xs);
|
||||||
|
|
||||||
|
if (f - f_iminus1).abs() < tolerance {
|
||||||
|
break;
|
||||||
|
} else {
|
||||||
|
f_iminus1 = f;
|
||||||
|
}
|
||||||
|
i += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
let exit_con = if i == max_iters {
|
||||||
|
ExitCondition::MaxIter
|
||||||
|
} else {
|
||||||
|
ExitCondition::Converged
|
||||||
|
};
|
||||||
|
OptimizationResult {
|
||||||
|
best_xs: xs,
|
||||||
|
best_fun_val: f,
|
||||||
|
exit_con,
|
||||||
|
iters: i,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod test {
|
||||||
|
use crate::objective_function::Fun;
|
||||||
|
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn simple_steepest_descent_test() {
|
||||||
|
let fun = Box::new(|xs: &[f64]| xs.iter().fold(0.0, |acc, x| acc + x.powi(2)));
|
||||||
|
let prime = Box::new(|xs: &[f64]| xs.iter().copied().collect::<Vec<f64>>());
|
||||||
|
|
||||||
|
let obj = Fun::new(fun, prime);
|
||||||
|
let line_search = LineSearch::ConstAlpha {
|
||||||
|
learning_rate: 0.25,
|
||||||
|
};
|
||||||
|
let res = steepest_descent(&obj, &[20.0], 1000, 1e-12, &line_search, -1.0);
|
||||||
|
|
||||||
|
if let ExitCondition::MaxIter = res.exit_con {
|
||||||
|
panic!("Failed to converge to minima");
|
||||||
|
}
|
||||||
|
println!(
|
||||||
|
"{:?} on iteration {}\n{}",
|
||||||
|
res.best_xs, res.iters, res.best_fun_val
|
||||||
|
);
|
||||||
|
assert!(res.best_fun_val < 1e-8);
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,5 @@
|
|||||||
|
pub mod gradient_descent;
|
||||||
|
pub mod heuristics;
|
||||||
|
pub mod minimize;
|
||||||
|
pub mod objective_function;
|
||||||
|
pub mod traits;
|
@ -0,0 +1,28 @@
|
|||||||
|
/// Result Enum dictating the exit condition for an optimization call
|
||||||
|
pub enum ExitCondition {
|
||||||
|
/// Optimization has converged to user specified tolerance
|
||||||
|
Converged,
|
||||||
|
/// Optimization has exceeded user specified max iteration count
|
||||||
|
MaxIter,
|
||||||
|
}
|
||||||
|
|
||||||
|
pub enum Direction {
|
||||||
|
Minimize,
|
||||||
|
Maximize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Direction {
|
||||||
|
pub fn factor(&self) -> f64 {
|
||||||
|
match self {
|
||||||
|
Direction::Minimize => -1.0,
|
||||||
|
Direction::Maximize => 1.0,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/// Struct holding the results for a minimization call
|
||||||
|
pub struct OptimizationResult<T> {
|
||||||
|
pub best_xs: Vec<T>,
|
||||||
|
pub best_fun_val: f64,
|
||||||
|
pub exit_con: ExitCondition,
|
||||||
|
pub iters: usize,
|
||||||
|
}
|
@ -0,0 +1,84 @@
|
|||||||
|
use crate::traits::XVar;
|
||||||
|
|
||||||
|
/// Trait that should be implemented for objects that will be minimzed
|
||||||
|
pub trait ObjectiveFun<T: XVar<E> + Clone, E> {
|
||||||
|
/// Return the objective function value at a specified coordinate
|
||||||
|
fn eval(&self, xs: &[T]) -> f64;
|
||||||
|
/// Return the gradients of the objective function value for specified coordinates
|
||||||
|
fn prime(&self, xs: &[T]) -> Vec<E>;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Enum allowing for selection of style of numerical differentiation
|
||||||
|
pub enum DiffStyle {
|
||||||
|
ForwardDifference,
|
||||||
|
BackwardDifference,
|
||||||
|
CentralDifference,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Struct that wraps a lambda and provides a numerical derivative for it for use in gradient
|
||||||
|
/// descent algorithms
|
||||||
|
pub struct FunWithNumericalDiff {
|
||||||
|
function: Box<dyn Fn(&[f64]) -> f64>,
|
||||||
|
dx: f64,
|
||||||
|
style: DiffStyle,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ObjectiveFun<f64, f64> for FunWithNumericalDiff {
|
||||||
|
fn eval(&self, xs: &[f64]) -> f64 {
|
||||||
|
(self.function)(xs)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn prime(&self, xs: &[f64]) -> Vec<f64> {
|
||||||
|
let mut xs_local = Vec::new();
|
||||||
|
xs_local.extend_from_slice(xs);
|
||||||
|
let f: Box<dyn FnMut((usize, &f64)) -> f64> = match self.style {
|
||||||
|
DiffStyle::ForwardDifference => Box::new(move |(i, x)| -> f64 {
|
||||||
|
xs_local[i] = x + self.dx;
|
||||||
|
let xprime = ((self.function)(&xs_local) - (self.function)(xs)) / (self.dx);
|
||||||
|
xs_local[i] = *x;
|
||||||
|
xprime
|
||||||
|
}),
|
||||||
|
DiffStyle::BackwardDifference => Box::new(move |(i, x)| -> f64 {
|
||||||
|
xs_local[i] = x - self.dx;
|
||||||
|
let xprime = ((self.function)(xs) - (self.function)(&xs_local)) / (self.dx);
|
||||||
|
xs_local[i] = *x;
|
||||||
|
xprime
|
||||||
|
}),
|
||||||
|
DiffStyle::CentralDifference => Box::new(move |(i, x)| -> f64 {
|
||||||
|
xs_local[i] = x - (0.5 * self.dx);
|
||||||
|
let f1 = (self.function)(&xs_local);
|
||||||
|
xs_local[i] = x + (0.5 * self.dx);
|
||||||
|
let f2 = (self.function)(&xs_local);
|
||||||
|
xs_local[i] = *x;
|
||||||
|
(f2 - f1) / self.dx
|
||||||
|
}),
|
||||||
|
};
|
||||||
|
xs.iter().enumerate().map(f).collect()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Struct that wraps two lambda with one providing the objective function evaluation and the other
|
||||||
|
/// providing the gradient value
|
||||||
|
pub struct Fun<T: XVar<E>, E> {
|
||||||
|
function: Box<dyn Fn(&[T]) -> f64>,
|
||||||
|
prime: Box<dyn Fn(&[T]) -> Vec<E>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
// Simple type to remove the generics
|
||||||
|
pub type F64Fun = Fun<f64, f64>;
|
||||||
|
|
||||||
|
impl<T: XVar<E>, E> ObjectiveFun<T, E> for Fun<T, E> {
|
||||||
|
fn eval(&self, xs: &[T]) -> f64 {
|
||||||
|
(self.function)(xs)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn prime(&self, xs: &[T]) -> Vec<E> {
|
||||||
|
(self.prime)(xs)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: XVar<E>, E> Fun<T, E> {
|
||||||
|
pub fn new(function: Box<dyn Fn(&[T]) -> f64>, prime: Box<dyn Fn(&[T]) -> Vec<E>>) -> Self {
|
||||||
|
Fun { function, prime }
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,10 @@
|
|||||||
|
pub trait XVar<E>: Clone {
|
||||||
|
fn update(&self, alpha: f64, prime: &E) -> Self;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Implementation of XVar for an f64 type
|
||||||
|
impl XVar<f64> for f64 {
|
||||||
|
fn update(&self, alpha: f64, prime: &f64) -> Self {
|
||||||
|
self + alpha * prime
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in new issue