generated from aselimov/cpp_project_template
178 lines
5.2 KiB
Plaintext
178 lines
5.2 KiB
Plaintext
#include "vec3.h"
|
|
#include <cuda_runtime.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
// Define kernel function to test Vec3 operations
|
|
template <typename T>
|
|
__global__ void testVec3Operations(Vec3<T> *results, Vec3<T> a, Vec3<T> b,
|
|
T scalar) {
|
|
int idx = threadIdx.x;
|
|
|
|
// Test different operations based on thread index
|
|
switch (idx) {
|
|
case 0: // Addition
|
|
results[idx] = a + b;
|
|
break;
|
|
case 1: // Subtraction
|
|
results[idx] = a - b;
|
|
break;
|
|
case 2: // Scale
|
|
results[idx] = a.scale(scalar);
|
|
break;
|
|
case 3: // Dot product - store in x component
|
|
results[idx].x = a.dot(b);
|
|
results[idx].y = 0;
|
|
results[idx].z = 0;
|
|
break;
|
|
case 4: // Cross product
|
|
results[idx] = a.cross(b);
|
|
break;
|
|
case 5: // Squared norm - store in x component
|
|
results[idx].x = a.squared_norm2();
|
|
results[idx].y = 0;
|
|
results[idx].z = 0;
|
|
break;
|
|
case 6: // Norm - store in x component
|
|
results[idx].x = a.norm2();
|
|
results[idx].y = 0;
|
|
results[idx].z = 0;
|
|
break;
|
|
case 7: // Normalized
|
|
results[idx] = a.normalized();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Test fixture for Vec3 CUDA tests
|
|
class Vec3CudaTest : public ::testing::Test {
|
|
protected:
|
|
void SetUp() override {
|
|
// Allocate device memory for results
|
|
cudaMalloc(&d_results, NUM_TESTS * sizeof(Vec3<float>));
|
|
}
|
|
|
|
void TearDown() override {
|
|
// Free device memory
|
|
cudaFree(d_results);
|
|
}
|
|
|
|
// Number of operations to test
|
|
static const int NUM_TESTS = 8;
|
|
|
|
// Pointer to device memory for results
|
|
Vec3<float> *d_results;
|
|
|
|
// Host memory for results
|
|
Vec3<float> h_results[NUM_TESTS];
|
|
|
|
// Test with a reasonable epsilon for floating point comparisons
|
|
float epsilon = 1e-5f;
|
|
};
|
|
|
|
TEST_F(Vec3CudaTest, BasicOperations) {
|
|
// Define test vectors
|
|
Vec3<float> a{1.0f, 2.0f, 3.0f};
|
|
Vec3<float> b{4.0f, 5.0f, 6.0f};
|
|
float scalar = 2.0f;
|
|
|
|
// Launch kernel with 8 threads to test different operations
|
|
testVec3Operations<<<1, NUM_TESTS>>>(d_results, a, b, scalar);
|
|
|
|
// Check for kernel execution errors
|
|
cudaError_t cudaStatus = cudaGetLastError();
|
|
ASSERT_EQ(cudaStatus, cudaSuccess)
|
|
<< "Kernel launch failed: " << cudaGetErrorString(cudaStatus);
|
|
|
|
// Copy results back to host
|
|
cudaStatus = cudaMemcpy(h_results, d_results, NUM_TESTS * sizeof(Vec3<float>),
|
|
cudaMemcpyDeviceToHost);
|
|
ASSERT_EQ(cudaStatus, cudaSuccess)
|
|
<< "cudaMemcpy failed: " << cudaGetErrorString(cudaStatus);
|
|
|
|
// Wait for GPU to finish
|
|
cudaStatus = cudaDeviceSynchronize();
|
|
ASSERT_EQ(cudaStatus, cudaSuccess)
|
|
<< "cudaDeviceSynchronize failed: " << cudaGetErrorString(cudaStatus);
|
|
|
|
// Test addition
|
|
EXPECT_NEAR(h_results[0].x, 5.0f, epsilon);
|
|
EXPECT_NEAR(h_results[0].y, 7.0f, epsilon);
|
|
EXPECT_NEAR(h_results[0].z, 9.0f, epsilon);
|
|
|
|
// Test subtraction
|
|
EXPECT_NEAR(h_results[1].x, -3.0f, epsilon);
|
|
EXPECT_NEAR(h_results[1].y, -3.0f, epsilon);
|
|
EXPECT_NEAR(h_results[1].z, -3.0f, epsilon);
|
|
|
|
// Test scale
|
|
EXPECT_NEAR(h_results[2].x, 2.0f, epsilon);
|
|
EXPECT_NEAR(h_results[2].y, 4.0f, epsilon);
|
|
EXPECT_NEAR(h_results[2].z, 6.0f, epsilon);
|
|
|
|
// Test dot product
|
|
EXPECT_NEAR(h_results[3].x, 32.0f, epsilon);
|
|
|
|
// Test cross product
|
|
EXPECT_NEAR(h_results[4].x, -3.0f, epsilon);
|
|
EXPECT_NEAR(h_results[4].y, 6.0f, epsilon);
|
|
EXPECT_NEAR(h_results[4].z, -3.0f, epsilon);
|
|
|
|
// Test squared norm
|
|
EXPECT_NEAR(h_results[5].x, 14.0f, epsilon);
|
|
|
|
// Test norm
|
|
EXPECT_NEAR(h_results[6].x, std::sqrt(14.0f), epsilon);
|
|
|
|
// Test normalized
|
|
float norm = std::sqrt(14.0f);
|
|
EXPECT_NEAR(h_results[7].x, 1.0f / norm, epsilon);
|
|
EXPECT_NEAR(h_results[7].y, 2.0f / norm, epsilon);
|
|
EXPECT_NEAR(h_results[7].z, 3.0f / norm, epsilon);
|
|
}
|
|
|
|
TEST_F(Vec3CudaTest, EdgeCases) {
|
|
// Test with zero vector
|
|
Vec3<float> zero{0.0f, 0.0f, 0.0f};
|
|
Vec3<float> nonZero{1.0f, 2.0f, 3.0f};
|
|
float scalar = 5.0f;
|
|
|
|
// Launch kernel with 8 threads to test different operations
|
|
testVec3Operations<<<1, NUM_TESTS>>>(d_results, zero, nonZero, scalar);
|
|
|
|
// Check for kernel execution errors
|
|
cudaError_t cudaStatus = cudaGetLastError();
|
|
ASSERT_EQ(cudaStatus, cudaSuccess)
|
|
<< "Kernel launch failed: " << cudaGetErrorString(cudaStatus);
|
|
|
|
// Copy results back to host
|
|
cudaStatus = cudaMemcpy(h_results, d_results, NUM_TESTS * sizeof(Vec3<float>),
|
|
cudaMemcpyDeviceToHost);
|
|
ASSERT_EQ(cudaStatus, cudaSuccess)
|
|
<< "cudaMemcpy failed: " << cudaGetErrorString(cudaStatus);
|
|
|
|
// Wait for GPU to finish
|
|
cudaStatus = cudaDeviceSynchronize();
|
|
ASSERT_EQ(cudaStatus, cudaSuccess)
|
|
<< "cudaDeviceSynchronize failed: " << cudaGetErrorString(cudaStatus);
|
|
|
|
// Test normalized with zero vector (should handle epsilon)
|
|
// Normalized of zero vector should be very small but not NaN
|
|
EXPECT_FALSE(isnan(h_results[7].x));
|
|
EXPECT_FALSE(isnan(h_results[7].y));
|
|
EXPECT_FALSE(isnan(h_results[7].z));
|
|
|
|
// Test dot product with zero vector (should be zero)
|
|
EXPECT_NEAR(h_results[3].x, 0.0f, epsilon);
|
|
|
|
// Test cross product with zero vector (should be zero)
|
|
EXPECT_NEAR(h_results[4].x, 0.0f, epsilon);
|
|
EXPECT_NEAR(h_results[4].y, 0.0f, epsilon);
|
|
EXPECT_NEAR(h_results[4].z, 0.0f, epsilon);
|
|
}
|
|
|
|
// Main function to run all tests
|
|
int main(int argc, char **argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|