features/cli #2
@ -24,6 +24,9 @@ ollama = "*"
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pytest = "^8.3.5"
|
||||
|
||||
[tool.poetry.scripts]
|
||||
code-rag = "code_rag.cli:main"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
165
src/code_rag/cli.py
Normal file
165
src/code_rag/cli.py
Normal file
@ -0,0 +1,165 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
from code_rag.rag import RAG
|
||||
|
||||
def stream_output(response_iter):
|
||||
"""Stream the response to console, handling each token"""
|
||||
try:
|
||||
for chunk in response_iter:
|
||||
print(chunk, end="", flush=True)
|
||||
print() # New line at end
|
||||
except KeyboardInterrupt:
|
||||
print("\nStreaming interrupted by user")
|
||||
|
||||
|
||||
def interactive_chat(rag_pipeline, rag_chain, no_stream=False):
|
||||
"""Run an interactive chat session"""
|
||||
print(
|
||||
"\nEnter your questions about the codebase. Type 'exit', 'quit', or press Ctrl+C to end the session.\n"
|
||||
)
|
||||
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
query = input("\nQuestion: ").strip()
|
||||
|
||||
if query.lower() in ["exit", "quit", ""]:
|
||||
print("\nEnding chat session.")
|
||||
break
|
||||
|
||||
print("\nResponse:")
|
||||
if no_stream:
|
||||
response = rag_pipeline.query_rag(rag_chain, query, stream=False)
|
||||
print(response)
|
||||
else:
|
||||
response_iter = rag_pipeline.query_rag(
|
||||
rag_chain, query, stream=True
|
||||
)
|
||||
stream_output(response_iter)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n\nEnding chat session.")
|
||||
break
|
||||
except EOFError:
|
||||
break
|
||||
except KeyboardInterrupt:
|
||||
print("\nChat session interrupted.")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Code RAG - Query your codebase using natural language"
|
||||
)
|
||||
parser.add_argument(
|
||||
"docs_dir", help="Directory containing the documents to process", type=str
|
||||
)
|
||||
parser.add_argument(
|
||||
"query",
|
||||
help="Initial query about your codebase (optional in interactive mode)",
|
||||
nargs="?",
|
||||
default=None,
|
||||
type=str,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--db-dir",
|
||||
help="Directory to store the vector database (default: .code_rag_db)",
|
||||
default=os.path.expanduser("~/.code_rag_db"),
|
||||
type=str,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tracker-file",
|
||||
help="File to track document changes (default: .code_rag_tracker.json)",
|
||||
default=os.path.expanduser("~/.code_rag_tracker.json"),
|
||||
type=str,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--force-refresh",
|
||||
help="Force refresh of the vector database",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ollama-url",
|
||||
help="URL for the Ollama server (default: 127.0.0.1)",
|
||||
default="127.0.0.1",
|
||||
type=str,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--embedding-model",
|
||||
help="Model to use for embeddings (default: nomic-embed-text)",
|
||||
default="nomic-embed-text",
|
||||
type=str,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--llm-model",
|
||||
help="Model to use for text generation (default: llama3.2)",
|
||||
default="llama3.2",
|
||||
type=str,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-stream", help="Disable streaming output", action="store_true"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-interactive",
|
||||
help="Run in non-interactive mode (answer single query and exit)",
|
||||
action="store_true",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.no_interactive and not args.query:
|
||||
parser.error("Query is required in non-interactive mode")
|
||||
|
||||
# Create RAG pipeline
|
||||
rag_pipeline = RAG(
|
||||
docs_dir=args.docs_dir,
|
||||
db_dir=args.db_dir,
|
||||
tracker_file=args.tracker_file,
|
||||
ollama_url=args.ollama_url,
|
||||
embedding_model=args.embedding_model,
|
||||
llm_model=args.llm_model,
|
||||
)
|
||||
|
||||
# Create or update vector database
|
||||
print(f"Processing documents in {args.docs_dir}...")
|
||||
print(f"Using models: embedding={args.embedding_model}, llm={args.llm_model}")
|
||||
print(f"Ollama server: {args.ollama_url}")
|
||||
vectorstore = rag_pipeline.create_vector_db(force_refresh=args.force_refresh)
|
||||
|
||||
# Set up RAG chain
|
||||
print("Setting up RAG pipeline...")
|
||||
rag_chain = rag_pipeline.setup_rag()
|
||||
|
||||
if args.no_interactive:
|
||||
# Single query mode
|
||||
print(f"\nQuery: {args.query}")
|
||||
print("\nResponse:")
|
||||
if args.no_stream:
|
||||
response = rag_pipeline.query_rag(rag_chain, args.query, stream=False)
|
||||
stream_output(response)
|
||||
else:
|
||||
response_iter = rag_pipeline.query_rag(rag_chain, args.query, stream=True)
|
||||
stream_output(response_iter)
|
||||
else:
|
||||
# Interactive mode
|
||||
if args.query:
|
||||
# Handle initial query if provided
|
||||
print(f"\nQuery: {args.query}")
|
||||
print("\nResponse:")
|
||||
if args.no_stream:
|
||||
response = rag_pipeline.query_rag(rag_chain, args.query, stream=False)
|
||||
stream_output(response)
|
||||
else:
|
||||
response_iter = rag_pipeline.query_rag(
|
||||
rag_chain, args.query, stream=True
|
||||
)
|
||||
stream_output(response_iter)
|
||||
|
||||
# Start interactive chat
|
||||
interactive_chat(rag_pipeline, rag_chain, args.no_stream)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,15 +1,24 @@
|
||||
import os
|
||||
import uuid
|
||||
import glob
|
||||
from langchain_community.document_loaders import DirectoryLoader, TextLoader
|
||||
import uuid
|
||||
from langchain.schema import Document
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_community.document_loaders import TextLoader
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.chat_history import BaseChatMessageHistory
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
||||
from langchain.chains.combine_documents import create_stuff_documents_chain
|
||||
from langchain_community.chat_message_histories import ChatMessageHistory
|
||||
from langchain_core.chat_history import BaseChatMessageHistory
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.runnables.history import RunnableWithMessageHistory
|
||||
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||||
from langchain_chroma import Chroma
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain_core.documents import Document
|
||||
import time
|
||||
|
||||
from code_rag.doc_tracker import DocumentTracker
|
||||
from code_rag.ollama_wrapper import OllamaWrapper
|
||||
from .doc_tracker import DocumentTracker
|
||||
from .ollama_wrapper import OllamaWrapper
|
||||
|
||||
|
||||
class RAG:
|
||||
@ -28,6 +37,7 @@ class RAG:
|
||||
self.ollama = OllamaWrapper(
|
||||
ollama_url, embedding_model=embedding_model, llm_model=llm_model
|
||||
)
|
||||
self.session_id = time.time()
|
||||
|
||||
def process_documents(self, files, text_splitter):
|
||||
"""Process document files into chunks with tracking metadata"""
|
||||
@ -84,9 +94,7 @@ class RAG:
|
||||
)
|
||||
|
||||
# Create embeddings
|
||||
print("Before embedding")
|
||||
embeddings = self.ollama.embeddings
|
||||
print("after embedding")
|
||||
|
||||
# Load or create vector store
|
||||
if os.path.exists(self.db_dir) and not force_refresh:
|
||||
@ -161,55 +169,117 @@ class RAG:
|
||||
return vectorstore
|
||||
|
||||
def setup_rag(self):
|
||||
"""
|
||||
Set up the RAG system with an existing vector database
|
||||
"""
|
||||
# Load the embeddings
|
||||
embeddings = self.ollama.embeddings
|
||||
|
||||
# Load the vector store
|
||||
"""Set up the RAG pipeline"""
|
||||
# Create vector store
|
||||
vectorstore = Chroma(
|
||||
persist_directory=self.db_dir, embedding_function=embeddings
|
||||
persist_directory=self.db_dir, embedding_function=self.ollama.embeddings
|
||||
)
|
||||
|
||||
# Create a retriever
|
||||
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
|
||||
|
||||
# Set up the LLM
|
||||
llm = self.ollama.llm
|
||||
|
||||
# Create a custom prompt template
|
||||
template = """
|
||||
Answer the question based on the context provided. If you don't know the answer,
|
||||
just say you don't know. Don't try to make up an answer.
|
||||
|
||||
Context: {context}
|
||||
|
||||
Question: {question}
|
||||
|
||||
Answer:
|
||||
"""
|
||||
|
||||
prompt = PromptTemplate(
|
||||
input_variables=["context", "question"], template=template
|
||||
# Create retriever
|
||||
retriever = vectorstore.as_retriever(
|
||||
search_type="similarity", search_kwargs={"k": 4}
|
||||
)
|
||||
|
||||
# Create the RAG chain
|
||||
rag_chain = RetrievalQA.from_chain_type(
|
||||
llm=llm,
|
||||
chain_type="stuff",
|
||||
retriever=retriever,
|
||||
chain_type_kwargs={"prompt": prompt},
|
||||
# Create chat history buffer
|
||||
self.chat_history = []
|
||||
|
||||
### Contextualize question ###
|
||||
contextualize_q_system_prompt = (
|
||||
"Given a chat history and the latest user question "
|
||||
"which might reference context in the chat history, "
|
||||
"formulate a standalone question which can be understood "
|
||||
"without the chat history. Do NOT answer the question, "
|
||||
"just reformulate it if needed and otherwise return it as is."
|
||||
)
|
||||
contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
("system", contextualize_q_system_prompt),
|
||||
MessagesPlaceholder("chat_history"),
|
||||
("human", "{input}"),
|
||||
]
|
||||
)
|
||||
history_aware_retriever = create_history_aware_retriever(
|
||||
self.ollama.llm, retriever, contextualize_q_prompt
|
||||
)
|
||||
|
||||
return rag_chain
|
||||
### Answer question ###
|
||||
system_prompt = (
|
||||
"You are an expert at analyzing code and documentation. "
|
||||
"Use the following pieces of context to answer the question at the end."
|
||||
"If you don't know the answer, just say that you don't know, "
|
||||
"don't try to make up an answer"
|
||||
"\n\n"
|
||||
"{context}\n\n"
|
||||
"Answer in a clear and concise manner. "
|
||||
"If you're referring to code, use markdown formatting."
|
||||
)
|
||||
qa_prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
("system", system_prompt),
|
||||
MessagesPlaceholder("chat_history"),
|
||||
("human", "{input}"),
|
||||
]
|
||||
)
|
||||
question_answer_chain = create_stuff_documents_chain(self.ollama.llm, qa_prompt)
|
||||
|
||||
def query_rag(self, rag_chain, query):
|
||||
rag_chain = create_retrieval_chain(
|
||||
history_aware_retriever, question_answer_chain
|
||||
)
|
||||
|
||||
### Statefully manage chat history ###
|
||||
self.store = {}
|
||||
|
||||
def get_session_history(session_id: str) -> BaseChatMessageHistory:
|
||||
if session_id not in self.store:
|
||||
self.store[session_id] = ChatMessageHistory()
|
||||
return self.store[session_id]
|
||||
|
||||
return RunnableWithMessageHistory(
|
||||
rag_chain,
|
||||
get_session_history,
|
||||
input_messages_key="input",
|
||||
history_messages_key="chat_history",
|
||||
output_messages_key="answer",
|
||||
)
|
||||
|
||||
def query_rag(self, rag_chain, query, stream=False):
|
||||
"""
|
||||
Query the RAG system
|
||||
|
||||
Args:
|
||||
rag_chain: The RAG chain to use
|
||||
query: Query string
|
||||
stream: If True, stream the response
|
||||
"""
|
||||
response = rag_chain.invoke({"query": query})
|
||||
return response["result"]
|
||||
if stream:
|
||||
response = rag_chain.stream(
|
||||
{"input": query},
|
||||
config={"configurable": {"session_id": self.session_id}},
|
||||
)
|
||||
# Store in chat history after getting full response
|
||||
full_response = ""
|
||||
for chunk in response:
|
||||
# Extract only the LLM answer chunk
|
||||
if "answer" in chunk:
|
||||
chunk_text = (
|
||||
chunk["answer"].content
|
||||
if hasattr(chunk["answer"], "content")
|
||||
else str(chunk["answer"])
|
||||
)
|
||||
full_response += chunk_text
|
||||
yield chunk_text
|
||||
else:
|
||||
response = rag_chain.invoke(
|
||||
{"input": query},
|
||||
config={"configurable": {"session_id": self.session_id}},
|
||||
)
|
||||
# Extract only the LLM answer from the response
|
||||
result = (
|
||||
response["answer"].content
|
||||
if hasattr(response["answer"], "content")
|
||||
else str(response["answer"])
|
||||
)
|
||||
return result
|
||||
|
||||
|
||||
def default_file_extensions():
|
||||
@ -217,11 +287,6 @@ def default_file_extensions():
|
||||
return [
|
||||
# Python
|
||||
".py",
|
||||
".pyi",
|
||||
".pyx",
|
||||
".pyc",
|
||||
".pyd",
|
||||
".pyw",
|
||||
# C/C++
|
||||
".c",
|
||||
".cpp",
|
||||
@ -235,14 +300,8 @@ def default_file_extensions():
|
||||
".ipp",
|
||||
# Rust
|
||||
".rs",
|
||||
".rlib",
|
||||
".rmeta",
|
||||
# Java
|
||||
".java",
|
||||
".jsp",
|
||||
".jav",
|
||||
".jar",
|
||||
".class",
|
||||
".kt",
|
||||
".kts",
|
||||
".groovy",
|
||||
@ -250,9 +309,6 @@ def default_file_extensions():
|
||||
".html",
|
||||
".htm",
|
||||
".css",
|
||||
".scss",
|
||||
".sass",
|
||||
".less",
|
||||
".js",
|
||||
".jsx",
|
||||
".ts",
|
||||
|
@ -51,16 +51,16 @@ def test_process_documents(tracker_file, docs_dir, db_dir, sample_docs, rag_pipe
|
||||
def test_create_vector_db(docs_dir, db_dir, tracker_file, sample_docs):
|
||||
"""Test creating a vector database"""
|
||||
rag_pipeline = RAG(docs_dir, db_dir, tracker_file)
|
||||
|
||||
|
||||
# Create files with different extensions
|
||||
files = {
|
||||
"test.py": "def hello():\n print('Hello, World!')",
|
||||
"main.cpp": "#include <iostream>\nint main() { std::cout << 'Hello'; return 0; }",
|
||||
"lib.rs": "fn main() { println!('Hello from Rust!'); }",
|
||||
"config.toml": "[package]\nname = 'test'",
|
||||
"doc.md": "# Documentation\nThis is a test file."
|
||||
"doc.md": "# Documentation\nThis is a test file.",
|
||||
}
|
||||
|
||||
|
||||
for filename, content in files.items():
|
||||
filepath = os.path.join(docs_dir, filename)
|
||||
with open(filepath, "w") as f:
|
||||
@ -72,14 +72,15 @@ def test_create_vector_db(docs_dir, db_dir, tracker_file, sample_docs):
|
||||
# Verify it was created
|
||||
assert os.path.exists(rag_pipeline.db_dir)
|
||||
assert vectorstore is not None
|
||||
|
||||
|
||||
# Check the database has content from all file types
|
||||
loaded_db = Chroma(
|
||||
persist_directory=rag_pipeline.db_dir, embedding_function=rag_pipeline.ollama.embeddings
|
||||
persist_directory=rag_pipeline.db_dir,
|
||||
embedding_function=rag_pipeline.ollama.embeddings,
|
||||
)
|
||||
# Should have content from all files
|
||||
assert loaded_db._collection.count() > 0
|
||||
|
||||
|
||||
# Verify each file type is included
|
||||
docs = loaded_db._collection.get()
|
||||
sources = {os.path.basename(m["source"]) for m in docs["metadatas"]}
|
||||
@ -94,11 +95,12 @@ def test_update_vector_db_with_changes(docs_dir, db_dir, tracker_file, sample_do
|
||||
"""Test updating a vector database with document changes"""
|
||||
rag_pipeline = RAG(docs_dir, db_dir, tracker_file)
|
||||
# Create initial vector database with only Python files
|
||||
vectorstore = rag_pipeline.create_vector_db(extensions=['.py'], force_refresh=True)
|
||||
vectorstore = rag_pipeline.create_vector_db(extensions=[".py"], force_refresh=True)
|
||||
|
||||
# Get initial count
|
||||
initial_db = Chroma(
|
||||
persist_directory=rag_pipeline.db_dir, embedding_function=rag_pipeline.ollama.embeddings
|
||||
persist_directory=rag_pipeline.db_dir,
|
||||
embedding_function=rag_pipeline.ollama.embeddings,
|
||||
)
|
||||
initial_count = initial_db._collection.count()
|
||||
|
||||
@ -107,9 +109,9 @@ def test_update_vector_db_with_changes(docs_dir, db_dir, tracker_file, sample_do
|
||||
new_files = {
|
||||
"newdoc.cpp": "#include <iostream>\nint main() { return 0; }",
|
||||
"lib.rs": "fn main() { println!('Hello'); }",
|
||||
"config.toml": "[package]\nname = 'test'"
|
||||
"config.toml": "[package]\nname = 'test'",
|
||||
}
|
||||
|
||||
|
||||
for filename, content in new_files.items():
|
||||
filepath = os.path.join(docs_dir, filename)
|
||||
with open(filepath, "w") as f:
|
||||
@ -120,10 +122,11 @@ def test_update_vector_db_with_changes(docs_dir, db_dir, tracker_file, sample_do
|
||||
|
||||
# Check the database has been updated
|
||||
updated_db = Chroma(
|
||||
persist_directory=rag_pipeline.db_dir, embedding_function=rag_pipeline.ollama.embeddings
|
||||
persist_directory=rag_pipeline.db_dir,
|
||||
embedding_function=rag_pipeline.ollama.embeddings,
|
||||
)
|
||||
assert updated_db._collection.count() > initial_count
|
||||
|
||||
|
||||
# Verify new files are included
|
||||
docs = updated_db._collection.get()
|
||||
sources = {os.path.basename(m["source"]) for m in docs["metadatas"]}
|
||||
@ -137,16 +140,16 @@ def test_update_vector_db_with_changes(docs_dir, db_dir, tracker_file, sample_do
|
||||
def test_full_rag_pipeline(docs_dir, db_dir, tracker_file, sample_docs):
|
||||
"""Test the entire RAG pipeline from document processing to querying"""
|
||||
rag_pipeline = RAG(docs_dir, db_dir, tracker_file)
|
||||
|
||||
|
||||
# Create documents with mixed content types
|
||||
test_files = {
|
||||
"python_info.py": """# Python Information
|
||||
def describe_python():
|
||||
\"\"\"Python is a high-level programming language known for its readability and versatility.\"\"\"
|
||||
pass""",
|
||||
"readme.md": "# Python\nPython is a popular programming language used in web development, data science, and automation."
|
||||
"readme.md": "# Python\nPython is a popular programming language used in web development, data science, and automation.",
|
||||
}
|
||||
|
||||
|
||||
for filename, content in test_files.items():
|
||||
filepath = os.path.join(rag_pipeline.docs_dir, filename)
|
||||
with open(filepath, "w") as f:
|
||||
@ -160,7 +163,10 @@ def describe_python():
|
||||
|
||||
# Query the system
|
||||
query = "What is Python?"
|
||||
response = rag_pipeline.query_rag(rag_chain, query)
|
||||
try:
|
||||
response = next(rag_pipeline.query_rag(rag_chain, query))
|
||||
except StopIteration as ex:
|
||||
response = ex.value
|
||||
|
||||
# Check if response contains relevant information
|
||||
# This is a soft test since the exact response will depend on the LLM
|
||||
|
Loading…
x
Reference in New Issue
Block a user