You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvim_config/typings/numpy/lib/function_base.pyi

383 lines
14 KiB

"""
This type stub file was generated by pyright.
"""
import sys
from collections.abc import Callable, Iterable, Iterator, Sequence
from typing import Any, Literal as L, Protocol, SupportsIndex, SupportsInt, TypeGuard, TypeVar, overload
from numpy import _OrderKACF, complex128, complexfloating, datetime64, float64, floating, generic, intp, object_, timedelta64, ufunc
from numpy._typing import ArrayLike, DTypeLike, NDArray, _ArrayLike, _ArrayLikeComplex_co, _ArrayLikeDT64_co, _ArrayLikeFloat_co, _ArrayLikeInt_co, _ArrayLikeObject_co, _ArrayLikeTD64_co, _ComplexLike_co, _DTypeLike, _FloatLike_co, _ScalarLike_co, _ShapeLike
if sys.version_info >= (3, 10):
...
else:
...
_T = TypeVar("_T")
_T_co = TypeVar("_T_co", covariant=True)
_SCT = TypeVar("_SCT", bound=generic)
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
_2Tuple = tuple[_T, _T]
class _TrimZerosSequence(Protocol[_T_co]):
def __len__(self) -> int:
...
def __getitem__(self, key: slice, /) -> _T_co:
...
def __iter__(self) -> Iterator[Any]:
...
class _SupportsWriteFlush(Protocol):
def write(self, s: str, /) -> object:
...
def flush(self) -> object:
...
__all__: list[str]
def add_newdoc_ufunc(ufunc: ufunc, new_docstring: str, /) -> None:
...
@overload
def rot90(m: _ArrayLike[_SCT], k: int = ..., axes: tuple[int, int] = ...) -> NDArray[_SCT]:
...
@overload
def rot90(m: ArrayLike, k: int = ..., axes: tuple[int, int] = ...) -> NDArray[Any]:
...
@overload
def flip(m: _SCT, axis: None = ...) -> _SCT:
...
@overload
def flip(m: _ScalarLike_co, axis: None = ...) -> Any:
...
@overload
def flip(m: _ArrayLike[_SCT], axis: None | _ShapeLike = ...) -> NDArray[_SCT]:
...
@overload
def flip(m: ArrayLike, axis: None | _ShapeLike = ...) -> NDArray[Any]:
...
def iterable(y: object) -> TypeGuard[Iterable[Any]]:
...
@overload
def average(a: _ArrayLikeFloat_co, axis: None = ..., weights: None | _ArrayLikeFloat_co = ..., returned: L[False] = ..., keepdims: L[False] = ...) -> floating[Any]:
...
@overload
def average(a: _ArrayLikeComplex_co, axis: None = ..., weights: None | _ArrayLikeComplex_co = ..., returned: L[False] = ..., keepdims: L[False] = ...) -> complexfloating[Any, Any]:
...
@overload
def average(a: _ArrayLikeObject_co, axis: None = ..., weights: None | Any = ..., returned: L[False] = ..., keepdims: L[False] = ...) -> Any:
...
@overload
def average(a: _ArrayLikeFloat_co, axis: None = ..., weights: None | _ArrayLikeFloat_co = ..., returned: L[True] = ..., keepdims: L[False] = ...) -> _2Tuple[floating[Any]]:
...
@overload
def average(a: _ArrayLikeComplex_co, axis: None = ..., weights: None | _ArrayLikeComplex_co = ..., returned: L[True] = ..., keepdims: L[False] = ...) -> _2Tuple[complexfloating[Any, Any]]:
...
@overload
def average(a: _ArrayLikeObject_co, axis: None = ..., weights: None | Any = ..., returned: L[True] = ..., keepdims: L[False] = ...) -> _2Tuple[Any]:
...
@overload
def average(a: _ArrayLikeComplex_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., weights: None | Any = ..., returned: L[False] = ..., keepdims: bool = ...) -> Any:
...
@overload
def average(a: _ArrayLikeComplex_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., weights: None | Any = ..., returned: L[True] = ..., keepdims: bool = ...) -> _2Tuple[Any]:
...
@overload
def asarray_chkfinite(a: _ArrayLike[_SCT], dtype: None = ..., order: _OrderKACF = ...) -> NDArray[_SCT]:
...
@overload
def asarray_chkfinite(a: object, dtype: None = ..., order: _OrderKACF = ...) -> NDArray[Any]:
...
@overload
def asarray_chkfinite(a: Any, dtype: _DTypeLike[_SCT], order: _OrderKACF = ...) -> NDArray[_SCT]:
...
@overload
def asarray_chkfinite(a: Any, dtype: DTypeLike, order: _OrderKACF = ...) -> NDArray[Any]:
...
@overload
def piecewise(x: _ArrayLike[_SCT], condlist: ArrayLike, funclist: Sequence[Any | Callable[..., Any]], *args: Any, **kw: Any) -> NDArray[_SCT]:
...
@overload
def piecewise(x: ArrayLike, condlist: ArrayLike, funclist: Sequence[Any | Callable[..., Any]], *args: Any, **kw: Any) -> NDArray[Any]:
...
def select(condlist: Sequence[ArrayLike], choicelist: Sequence[ArrayLike], default: ArrayLike = ...) -> NDArray[Any]:
...
@overload
def copy(a: _ArrayType, order: _OrderKACF, subok: L[True]) -> _ArrayType:
...
@overload
def copy(a: _ArrayType, order: _OrderKACF = ..., *, subok: L[True]) -> _ArrayType:
...
@overload
def copy(a: _ArrayLike[_SCT], order: _OrderKACF = ..., subok: L[False] = ...) -> NDArray[_SCT]:
...
@overload
def copy(a: ArrayLike, order: _OrderKACF = ..., subok: L[False] = ...) -> NDArray[Any]:
...
def gradient(f: ArrayLike, *varargs: ArrayLike, axis: None | _ShapeLike = ..., edge_order: L[1, 2] = ...) -> Any:
...
@overload
def diff(a: _T, n: L[0], axis: SupportsIndex = ..., prepend: ArrayLike = ..., append: ArrayLike = ...) -> _T:
...
@overload
def diff(a: ArrayLike, n: int = ..., axis: SupportsIndex = ..., prepend: ArrayLike = ..., append: ArrayLike = ...) -> NDArray[Any]:
...
@overload
def interp(x: _ArrayLikeFloat_co, xp: _ArrayLikeFloat_co, fp: _ArrayLikeFloat_co, left: None | _FloatLike_co = ..., right: None | _FloatLike_co = ..., period: None | _FloatLike_co = ...) -> NDArray[float64]:
...
@overload
def interp(x: _ArrayLikeFloat_co, xp: _ArrayLikeFloat_co, fp: _ArrayLikeComplex_co, left: None | _ComplexLike_co = ..., right: None | _ComplexLike_co = ..., period: None | _FloatLike_co = ...) -> NDArray[complex128]:
...
@overload
def angle(z: _ComplexLike_co, deg: bool = ...) -> floating[Any]:
...
@overload
def angle(z: object_, deg: bool = ...) -> Any:
...
@overload
def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating[Any]]:
...
@overload
def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]:
...
@overload
def unwrap(p: _ArrayLikeFloat_co, discont: None | float = ..., axis: int = ..., *, period: float = ...) -> NDArray[floating[Any]]:
...
@overload
def unwrap(p: _ArrayLikeObject_co, discont: None | float = ..., axis: int = ..., *, period: float = ...) -> NDArray[object_]:
...
def sort_complex(a: ArrayLike) -> NDArray[complexfloating[Any, Any]]:
...
def trim_zeros(filt: _TrimZerosSequence[_T], trim: L["f", "b", "fb", "bf"] = ...) -> _T:
...
@overload
def extract(condition: ArrayLike, arr: _ArrayLike[_SCT]) -> NDArray[_SCT]:
...
@overload
def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]:
...
def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None:
...
def disp(mesg: object, device: None | _SupportsWriteFlush = ..., linefeed: bool = ...) -> None:
...
@overload
def cov(m: _ArrayLikeFloat_co, y: None | _ArrayLikeFloat_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: None = ...) -> NDArray[floating[Any]]:
...
@overload
def cov(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: None = ...) -> NDArray[complexfloating[Any, Any]]:
...
@overload
def cov(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: _DTypeLike[_SCT]) -> NDArray[_SCT]:
...
@overload
def cov(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: DTypeLike) -> NDArray[Any]:
...
@overload
def corrcoef(m: _ArrayLikeFloat_co, y: None | _ArrayLikeFloat_co = ..., rowvar: bool = ..., *, dtype: None = ...) -> NDArray[floating[Any]]:
...
@overload
def corrcoef(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: None = ...) -> NDArray[complexfloating[Any, Any]]:
...
@overload
def corrcoef(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: _DTypeLike[_SCT]) -> NDArray[_SCT]:
...
@overload
def corrcoef(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: DTypeLike) -> NDArray[Any]:
...
def blackman(M: _FloatLike_co) -> NDArray[floating[Any]]:
...
def bartlett(M: _FloatLike_co) -> NDArray[floating[Any]]:
...
def hanning(M: _FloatLike_co) -> NDArray[floating[Any]]:
...
def hamming(M: _FloatLike_co) -> NDArray[floating[Any]]:
...
def i0(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
...
def kaiser(M: _FloatLike_co, beta: _FloatLike_co) -> NDArray[floating[Any]]:
...
@overload
def sinc(x: _FloatLike_co) -> floating[Any]:
...
@overload
def sinc(x: _ComplexLike_co) -> complexfloating[Any, Any]:
...
@overload
def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
...
@overload
def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
...
@overload
def median(a: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> floating[Any]:
...
@overload
def median(a: _ArrayLikeComplex_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> complexfloating[Any, Any]:
...
@overload
def median(a: _ArrayLikeTD64_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> timedelta64:
...
@overload
def median(a: _ArrayLikeObject_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> Any:
...
@overload
def median(a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., out: None = ..., overwrite_input: bool = ..., keepdims: bool = ...) -> Any:
...
@overload
def median(a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., out: _ArrayType = ..., overwrite_input: bool = ..., keepdims: bool = ...) -> _ArrayType:
...
_MethodKind = L["inverted_cdf", "averaged_inverted_cdf", "closest_observation", "interpolated_inverted_cdf", "hazen", "weibull", "linear", "median_unbiased", "normal_unbiased", "lower", "higher", "midpoint", "nearest",]
@overload
def percentile(a: _ArrayLikeFloat_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> floating[Any]:
...
@overload
def percentile(a: _ArrayLikeComplex_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> complexfloating[Any, Any]:
...
@overload
def percentile(a: _ArrayLikeTD64_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> timedelta64:
...
@overload
def percentile(a: _ArrayLikeDT64_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> datetime64:
...
@overload
def percentile(a: _ArrayLikeObject_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> Any:
...
@overload
def percentile(a: _ArrayLikeFloat_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[floating[Any]]:
...
@overload
def percentile(a: _ArrayLikeComplex_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[complexfloating[Any, Any]]:
...
@overload
def percentile(a: _ArrayLikeTD64_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[timedelta64]:
...
@overload
def percentile(a: _ArrayLikeDT64_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[datetime64]:
...
@overload
def percentile(a: _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[object_]:
...
@overload
def percentile(a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None | _ShapeLike = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: bool = ...) -> Any:
...
@overload
def percentile(a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None | _ShapeLike = ..., out: _ArrayType = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: bool = ...) -> _ArrayType:
...
quantile = ...
def trapz(y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, x: None | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co = ..., dx: float = ..., axis: SupportsIndex = ...) -> Any:
...
def meshgrid(*xi: ArrayLike, copy: bool = ..., sparse: bool = ..., indexing: L["xy", "ij"] = ...) -> list[NDArray[Any]]:
...
@overload
def delete(arr: _ArrayLike[_SCT], obj: slice | _ArrayLikeInt_co, axis: None | SupportsIndex = ...) -> NDArray[_SCT]:
...
@overload
def delete(arr: ArrayLike, obj: slice | _ArrayLikeInt_co, axis: None | SupportsIndex = ...) -> NDArray[Any]:
...
@overload
def insert(arr: _ArrayLike[_SCT], obj: slice | _ArrayLikeInt_co, values: ArrayLike, axis: None | SupportsIndex = ...) -> NDArray[_SCT]:
...
@overload
def insert(arr: ArrayLike, obj: slice | _ArrayLikeInt_co, values: ArrayLike, axis: None | SupportsIndex = ...) -> NDArray[Any]:
...
def append(arr: ArrayLike, values: ArrayLike, axis: None | SupportsIndex = ...) -> NDArray[Any]:
...
@overload
def digitize(x: _FloatLike_co, bins: _ArrayLikeFloat_co, right: bool = ...) -> intp:
...
@overload
def digitize(x: _ArrayLikeFloat_co, bins: _ArrayLikeFloat_co, right: bool = ...) -> NDArray[intp]:
...