You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
383 lines
14 KiB
383 lines
14 KiB
"""
|
|
This type stub file was generated by pyright.
|
|
"""
|
|
|
|
import sys
|
|
from collections.abc import Callable, Iterable, Iterator, Sequence
|
|
from typing import Any, Literal as L, Protocol, SupportsIndex, SupportsInt, TypeGuard, TypeVar, overload
|
|
from numpy import _OrderKACF, complex128, complexfloating, datetime64, float64, floating, generic, intp, object_, timedelta64, ufunc
|
|
from numpy._typing import ArrayLike, DTypeLike, NDArray, _ArrayLike, _ArrayLikeComplex_co, _ArrayLikeDT64_co, _ArrayLikeFloat_co, _ArrayLikeInt_co, _ArrayLikeObject_co, _ArrayLikeTD64_co, _ComplexLike_co, _DTypeLike, _FloatLike_co, _ScalarLike_co, _ShapeLike
|
|
|
|
if sys.version_info >= (3, 10):
|
|
...
|
|
else:
|
|
...
|
|
_T = TypeVar("_T")
|
|
_T_co = TypeVar("_T_co", covariant=True)
|
|
_SCT = TypeVar("_SCT", bound=generic)
|
|
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
|
|
_2Tuple = tuple[_T, _T]
|
|
class _TrimZerosSequence(Protocol[_T_co]):
|
|
def __len__(self) -> int:
|
|
...
|
|
|
|
def __getitem__(self, key: slice, /) -> _T_co:
|
|
...
|
|
|
|
def __iter__(self) -> Iterator[Any]:
|
|
...
|
|
|
|
|
|
|
|
class _SupportsWriteFlush(Protocol):
|
|
def write(self, s: str, /) -> object:
|
|
...
|
|
|
|
def flush(self) -> object:
|
|
...
|
|
|
|
|
|
|
|
__all__: list[str]
|
|
def add_newdoc_ufunc(ufunc: ufunc, new_docstring: str, /) -> None:
|
|
...
|
|
|
|
@overload
|
|
def rot90(m: _ArrayLike[_SCT], k: int = ..., axes: tuple[int, int] = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def rot90(m: ArrayLike, k: int = ..., axes: tuple[int, int] = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def flip(m: _SCT, axis: None = ...) -> _SCT:
|
|
...
|
|
|
|
@overload
|
|
def flip(m: _ScalarLike_co, axis: None = ...) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def flip(m: _ArrayLike[_SCT], axis: None | _ShapeLike = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def flip(m: ArrayLike, axis: None | _ShapeLike = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
def iterable(y: object) -> TypeGuard[Iterable[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def average(a: _ArrayLikeFloat_co, axis: None = ..., weights: None | _ArrayLikeFloat_co = ..., returned: L[False] = ..., keepdims: L[False] = ...) -> floating[Any]:
|
|
...
|
|
|
|
@overload
|
|
def average(a: _ArrayLikeComplex_co, axis: None = ..., weights: None | _ArrayLikeComplex_co = ..., returned: L[False] = ..., keepdims: L[False] = ...) -> complexfloating[Any, Any]:
|
|
...
|
|
|
|
@overload
|
|
def average(a: _ArrayLikeObject_co, axis: None = ..., weights: None | Any = ..., returned: L[False] = ..., keepdims: L[False] = ...) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def average(a: _ArrayLikeFloat_co, axis: None = ..., weights: None | _ArrayLikeFloat_co = ..., returned: L[True] = ..., keepdims: L[False] = ...) -> _2Tuple[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def average(a: _ArrayLikeComplex_co, axis: None = ..., weights: None | _ArrayLikeComplex_co = ..., returned: L[True] = ..., keepdims: L[False] = ...) -> _2Tuple[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def average(a: _ArrayLikeObject_co, axis: None = ..., weights: None | Any = ..., returned: L[True] = ..., keepdims: L[False] = ...) -> _2Tuple[Any]:
|
|
...
|
|
|
|
@overload
|
|
def average(a: _ArrayLikeComplex_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., weights: None | Any = ..., returned: L[False] = ..., keepdims: bool = ...) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def average(a: _ArrayLikeComplex_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., weights: None | Any = ..., returned: L[True] = ..., keepdims: bool = ...) -> _2Tuple[Any]:
|
|
...
|
|
|
|
@overload
|
|
def asarray_chkfinite(a: _ArrayLike[_SCT], dtype: None = ..., order: _OrderKACF = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def asarray_chkfinite(a: object, dtype: None = ..., order: _OrderKACF = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def asarray_chkfinite(a: Any, dtype: _DTypeLike[_SCT], order: _OrderKACF = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def asarray_chkfinite(a: Any, dtype: DTypeLike, order: _OrderKACF = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def piecewise(x: _ArrayLike[_SCT], condlist: ArrayLike, funclist: Sequence[Any | Callable[..., Any]], *args: Any, **kw: Any) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def piecewise(x: ArrayLike, condlist: ArrayLike, funclist: Sequence[Any | Callable[..., Any]], *args: Any, **kw: Any) -> NDArray[Any]:
|
|
...
|
|
|
|
def select(condlist: Sequence[ArrayLike], choicelist: Sequence[ArrayLike], default: ArrayLike = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def copy(a: _ArrayType, order: _OrderKACF, subok: L[True]) -> _ArrayType:
|
|
...
|
|
|
|
@overload
|
|
def copy(a: _ArrayType, order: _OrderKACF = ..., *, subok: L[True]) -> _ArrayType:
|
|
...
|
|
|
|
@overload
|
|
def copy(a: _ArrayLike[_SCT], order: _OrderKACF = ..., subok: L[False] = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def copy(a: ArrayLike, order: _OrderKACF = ..., subok: L[False] = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
def gradient(f: ArrayLike, *varargs: ArrayLike, axis: None | _ShapeLike = ..., edge_order: L[1, 2] = ...) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def diff(a: _T, n: L[0], axis: SupportsIndex = ..., prepend: ArrayLike = ..., append: ArrayLike = ...) -> _T:
|
|
...
|
|
|
|
@overload
|
|
def diff(a: ArrayLike, n: int = ..., axis: SupportsIndex = ..., prepend: ArrayLike = ..., append: ArrayLike = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def interp(x: _ArrayLikeFloat_co, xp: _ArrayLikeFloat_co, fp: _ArrayLikeFloat_co, left: None | _FloatLike_co = ..., right: None | _FloatLike_co = ..., period: None | _FloatLike_co = ...) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def interp(x: _ArrayLikeFloat_co, xp: _ArrayLikeFloat_co, fp: _ArrayLikeComplex_co, left: None | _ComplexLike_co = ..., right: None | _ComplexLike_co = ..., period: None | _FloatLike_co = ...) -> NDArray[complex128]:
|
|
...
|
|
|
|
@overload
|
|
def angle(z: _ComplexLike_co, deg: bool = ...) -> floating[Any]:
|
|
...
|
|
|
|
@overload
|
|
def angle(z: object_, deg: bool = ...) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]:
|
|
...
|
|
|
|
@overload
|
|
def unwrap(p: _ArrayLikeFloat_co, discont: None | float = ..., axis: int = ..., *, period: float = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def unwrap(p: _ArrayLikeObject_co, discont: None | float = ..., axis: int = ..., *, period: float = ...) -> NDArray[object_]:
|
|
...
|
|
|
|
def sort_complex(a: ArrayLike) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
def trim_zeros(filt: _TrimZerosSequence[_T], trim: L["f", "b", "fb", "bf"] = ...) -> _T:
|
|
...
|
|
|
|
@overload
|
|
def extract(condition: ArrayLike, arr: _ArrayLike[_SCT]) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]:
|
|
...
|
|
|
|
def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None:
|
|
...
|
|
|
|
def disp(mesg: object, device: None | _SupportsWriteFlush = ..., linefeed: bool = ...) -> None:
|
|
...
|
|
|
|
@overload
|
|
def cov(m: _ArrayLikeFloat_co, y: None | _ArrayLikeFloat_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: None = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def cov(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: None = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def cov(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: _DTypeLike[_SCT]) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def cov(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: DTypeLike) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def corrcoef(m: _ArrayLikeFloat_co, y: None | _ArrayLikeFloat_co = ..., rowvar: bool = ..., *, dtype: None = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def corrcoef(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: None = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def corrcoef(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: _DTypeLike[_SCT]) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def corrcoef(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: DTypeLike) -> NDArray[Any]:
|
|
...
|
|
|
|
def blackman(M: _FloatLike_co) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
def bartlett(M: _FloatLike_co) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
def hanning(M: _FloatLike_co) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
def hamming(M: _FloatLike_co) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
def i0(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
def kaiser(M: _FloatLike_co, beta: _FloatLike_co) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def sinc(x: _FloatLike_co) -> floating[Any]:
|
|
...
|
|
|
|
@overload
|
|
def sinc(x: _ComplexLike_co) -> complexfloating[Any, Any]:
|
|
...
|
|
|
|
@overload
|
|
def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def median(a: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> floating[Any]:
|
|
...
|
|
|
|
@overload
|
|
def median(a: _ArrayLikeComplex_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> complexfloating[Any, Any]:
|
|
...
|
|
|
|
@overload
|
|
def median(a: _ArrayLikeTD64_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> timedelta64:
|
|
...
|
|
|
|
@overload
|
|
def median(a: _ArrayLikeObject_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def median(a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., out: None = ..., overwrite_input: bool = ..., keepdims: bool = ...) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def median(a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., out: _ArrayType = ..., overwrite_input: bool = ..., keepdims: bool = ...) -> _ArrayType:
|
|
...
|
|
|
|
_MethodKind = L["inverted_cdf", "averaged_inverted_cdf", "closest_observation", "interpolated_inverted_cdf", "hazen", "weibull", "linear", "median_unbiased", "normal_unbiased", "lower", "higher", "midpoint", "nearest",]
|
|
@overload
|
|
def percentile(a: _ArrayLikeFloat_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> floating[Any]:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeComplex_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> complexfloating[Any, Any]:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeTD64_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> timedelta64:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeDT64_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> datetime64:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeObject_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeFloat_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeComplex_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeTD64_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[timedelta64]:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeDT64_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[datetime64]:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[object_]:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None | _ShapeLike = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: bool = ...) -> Any:
|
|
...
|
|
|
|
@overload
|
|
def percentile(a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None | _ShapeLike = ..., out: _ArrayType = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: bool = ...) -> _ArrayType:
|
|
...
|
|
|
|
quantile = ...
|
|
def trapz(y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, x: None | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co = ..., dx: float = ..., axis: SupportsIndex = ...) -> Any:
|
|
...
|
|
|
|
def meshgrid(*xi: ArrayLike, copy: bool = ..., sparse: bool = ..., indexing: L["xy", "ij"] = ...) -> list[NDArray[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def delete(arr: _ArrayLike[_SCT], obj: slice | _ArrayLikeInt_co, axis: None | SupportsIndex = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def delete(arr: ArrayLike, obj: slice | _ArrayLikeInt_co, axis: None | SupportsIndex = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def insert(arr: _ArrayLike[_SCT], obj: slice | _ArrayLikeInt_co, values: ArrayLike, axis: None | SupportsIndex = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def insert(arr: ArrayLike, obj: slice | _ArrayLikeInt_co, values: ArrayLike, axis: None | SupportsIndex = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
def append(arr: ArrayLike, values: ArrayLike, axis: None | SupportsIndex = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def digitize(x: _FloatLike_co, bins: _ArrayLikeFloat_co, right: bool = ...) -> intp:
|
|
...
|
|
|
|
@overload
|
|
def digitize(x: _ArrayLikeFloat_co, bins: _ArrayLikeFloat_co, right: bool = ...) -> NDArray[intp]:
|
|
...
|
|
|