You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvim_config/typings/numpy/lib/index_tricks.pyi

152 lines
3.7 KiB

"""
This type stub file was generated by pyright.
"""
from collections.abc import Sequence
from typing import Any, Generic, Literal, SupportsIndex, TypeVar, overload
from numpy import bool_, bytes_, complex_, dtype, float_, int_, matrix as _Matrix, ndarray, str_
from numpy._typing import ArrayLike, DTypeLike, NDArray, _FiniteNestedSequence, _NestedSequence, _SupportsDType
_T = TypeVar("_T")
_DType = TypeVar("_DType", bound=dtype[Any])
_BoolType = TypeVar("_BoolType", Literal[True], Literal[False])
_TupType = TypeVar("_TupType", bound=tuple[Any, ...])
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
__all__: list[str]
@overload
def ix_(*args: _FiniteNestedSequence[_SupportsDType[_DType]]) -> tuple[ndarray[Any, _DType], ...]:
...
@overload
def ix_(*args: str | _NestedSequence[str]) -> tuple[NDArray[str_], ...]:
...
@overload
def ix_(*args: bytes | _NestedSequence[bytes]) -> tuple[NDArray[bytes_], ...]:
...
@overload
def ix_(*args: bool | _NestedSequence[bool]) -> tuple[NDArray[bool_], ...]:
...
@overload
def ix_(*args: int | _NestedSequence[int]) -> tuple[NDArray[int_], ...]:
...
@overload
def ix_(*args: float | _NestedSequence[float]) -> tuple[NDArray[float_], ...]:
...
@overload
def ix_(*args: complex | _NestedSequence[complex]) -> tuple[NDArray[complex_], ...]:
...
class nd_grid(Generic[_BoolType]):
sparse: _BoolType
def __init__(self, sparse: _BoolType = ...) -> None:
...
@overload
def __getitem__(self: nd_grid[Literal[False]], key: slice | Sequence[slice]) -> NDArray[Any]:
...
@overload
def __getitem__(self: nd_grid[Literal[True]], key: slice | Sequence[slice]) -> list[NDArray[Any]]:
...
class MGridClass(nd_grid[Literal[False]]):
def __init__(self) -> None:
...
mgrid: MGridClass
class OGridClass(nd_grid[Literal[True]]):
def __init__(self) -> None:
...
ogrid: OGridClass
class AxisConcatenator:
axis: int
matrix: bool
ndmin: int
trans1d: int
def __init__(self, axis: int = ..., matrix: bool = ..., ndmin: int = ..., trans1d: int = ...) -> None:
...
@staticmethod
@overload
def concatenate(*a: ArrayLike, axis: SupportsIndex = ..., out: None = ...) -> NDArray[Any]:
...
@staticmethod
@overload
def concatenate(*a: ArrayLike, axis: SupportsIndex = ..., out: _ArrayType = ...) -> _ArrayType:
...
@staticmethod
def makemat(data: ArrayLike, dtype: DTypeLike = ..., copy: bool = ...) -> _Matrix[Any, Any]:
...
def __getitem__(self, key: Any) -> Any:
...
class RClass(AxisConcatenator):
axis: Literal[0]
matrix: Literal[False]
ndmin: Literal[1]
trans1d: Literal[-1]
def __init__(self) -> None:
...
r_: RClass
class CClass(AxisConcatenator):
axis: Literal[-1]
matrix: Literal[False]
ndmin: Literal[2]
trans1d: Literal[0]
def __init__(self) -> None:
...
c_: CClass
class IndexExpression(Generic[_BoolType]):
maketuple: _BoolType
def __init__(self, maketuple: _BoolType) -> None:
...
@overload
def __getitem__(self, item: _TupType) -> _TupType:
...
@overload
def __getitem__(self: IndexExpression[Literal[True]], item: _T) -> tuple[_T]:
...
@overload
def __getitem__(self: IndexExpression[Literal[False]], item: _T) -> _T:
...
index_exp: IndexExpression[Literal[True]]
s_: IndexExpression[Literal[False]]
def fill_diagonal(a: ndarray[Any, Any], val: Any, wrap: bool = ...) -> None:
...
def diag_indices(n: int, ndim: int = ...) -> tuple[NDArray[int_], ...]:
...
def diag_indices_from(arr: ArrayLike) -> tuple[NDArray[int_], ...]:
...