Fix steepest descent and backtracking line search
This commit is contained in:
parent
42e9b748dd
commit
08faf76ea3
@ -1,3 +1,5 @@
|
|||||||
|
use core::fmt;
|
||||||
|
|
||||||
use crate::{objective_function::ObjectiveFun, traits::XVar};
|
use crate::{objective_function::ObjectiveFun, traits::XVar};
|
||||||
|
|
||||||
pub enum LineSearch {
|
pub enum LineSearch {
|
||||||
@ -20,7 +22,7 @@ impl LineSearch {
|
|||||||
) -> f64
|
) -> f64
|
||||||
where
|
where
|
||||||
T: XVar<E> + Clone,
|
T: XVar<E> + Clone,
|
||||||
E:,
|
E: fmt::Debug,
|
||||||
{
|
{
|
||||||
match self {
|
match self {
|
||||||
LineSearch::ConstAlpha { learning_rate } => *learning_rate,
|
LineSearch::ConstAlpha { learning_rate } => *learning_rate,
|
||||||
@ -30,17 +32,16 @@ impl LineSearch {
|
|||||||
c,
|
c,
|
||||||
} => {
|
} => {
|
||||||
let prime = fun.prime(xs);
|
let prime = fun.prime(xs);
|
||||||
let mut del_f = T::scale_prime(&prime, *c);
|
let fk = fun.eval(xs);
|
||||||
let mut new_f = fun.eval(&xs.update(-1.0, &prime));
|
let mut new_f = fun.eval(&xs.update(1.0, &prime));
|
||||||
let mut t = 1.0;
|
let mut t = 1.0;
|
||||||
for i in 0..*max_iterations {
|
while fk
|
||||||
if new_f > T::prime_inner_product(&T::scale_prime(&del_f, t), direction) {
|
< new_f
|
||||||
break;
|
+ t * c * T::prime_inner_product(&T::scale_prime(&prime, -1.0), direction)
|
||||||
}
|
{
|
||||||
t *= gamma;
|
t *= gamma;
|
||||||
let new_x = xs.update(-t, &prime);
|
let new_x = xs.update(t, direction);
|
||||||
new_f = fun.eval(&new_x);
|
new_f = fun.eval(&new_x);
|
||||||
del_f = fun.prime(&new_x);
|
|
||||||
}
|
}
|
||||||
t
|
t
|
||||||
}
|
}
|
||||||
|
@ -6,7 +6,7 @@ use crate::{
|
|||||||
|
|
||||||
use super::line_search::LineSearch;
|
use super::line_search::LineSearch;
|
||||||
|
|
||||||
pub fn steepest_descent<T: XVar<E> + Clone, E>(
|
pub fn steepest_descent<T: XVar<E> + Clone, E: std::fmt::Debug>(
|
||||||
fun: &dyn ObjectiveFun<T, E>,
|
fun: &dyn ObjectiveFun<T, E>,
|
||||||
x0: &T,
|
x0: &T,
|
||||||
max_iters: usize,
|
max_iters: usize,
|
||||||
@ -22,11 +22,10 @@ pub fn steepest_descent<T: XVar<E> + Clone, E>(
|
|||||||
let mut f = 0.0;
|
let mut f = 0.0;
|
||||||
let mut i = 0;
|
let mut i = 0;
|
||||||
for _ in 0..max_iters {
|
for _ in 0..max_iters {
|
||||||
let primes = fun.prime(&xs);
|
let direction = T::scale_prime(&fun.prime(&xs), -1.0);
|
||||||
let learning_rate = line_search.get_learning_rate(fun, &xs, &T::scale_prime(&primes, -1.0));
|
let learning_rate = line_search.get_learning_rate(fun, &xs, &direction);
|
||||||
xs = xs.update(direction * learning_rate, &primes);
|
xs = xs.update(learning_rate, &direction);
|
||||||
f = fun.eval(&xs);
|
f = fun.eval(&xs);
|
||||||
|
|
||||||
if (f - f_iminus1).abs() < tolerance {
|
if (f - f_iminus1).abs() < tolerance {
|
||||||
break;
|
break;
|
||||||
} else {
|
} else {
|
||||||
@ -66,21 +65,52 @@ mod test {
|
|||||||
},
|
},
|
||||||
LineSearch::BackTrack {
|
LineSearch::BackTrack {
|
||||||
max_iterations: 100,
|
max_iterations: 100,
|
||||||
gamma: 0.5,
|
gamma: 0.9,
|
||||||
c: 0.1,
|
c: 0.3,
|
||||||
},
|
},
|
||||||
];
|
];
|
||||||
for line_search in line_searches {
|
for line_search in line_searches {
|
||||||
let res = steepest_descent(&obj, &vec![20.0], 1000, 1e-12, &line_search, -1.0);
|
let res = steepest_descent(&obj, &vec![20.0, 20.0], 1000, 1e-12, &line_search, -1.0);
|
||||||
|
|
||||||
if let ExitCondition::MaxIter = res.exit_con {
|
if let ExitCondition::MaxIter = res.exit_con {
|
||||||
panic!("Failed to converge to minima");
|
panic!("Failed to converge to minima");
|
||||||
}
|
}
|
||||||
println!(
|
println!(
|
||||||
"{:?} on iteration {}\n{}",
|
"{:?} on iteration {} has value:\n{}",
|
||||||
res.best_xs, res.iters, res.best_fun_val
|
res.best_xs, res.iters, res.best_fun_val
|
||||||
);
|
);
|
||||||
assert!(res.best_fun_val < 1e-8);
|
assert!(res.best_fun_val < 1e-8);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn basic_beale_test() {
|
||||||
|
let fun = Box::new(|x: &Vec<f64>| {
|
||||||
|
(1.5 - x[0] + x[0] * x[1]).powi(2)
|
||||||
|
+ (2.25 - x[0] + x[0] * x[1].powi(2)).powi(2)
|
||||||
|
+ (2.625 - x[0] + x[0] * x[1].powi(3)).powi(2)
|
||||||
|
});
|
||||||
|
let prime = Box::new(|x: &Vec<f64>| {
|
||||||
|
vec![
|
||||||
|
2.0 * (1.5 - x[0] + x[0] * x[1]) * (x[1] - 1.0)
|
||||||
|
+ 2.0 * (2.25 - x[0] + x[0] * x[1].powi(2)) * (x[1].powi(2) - 1.0)
|
||||||
|
+ 2.0 * (2.625 - x[0] + x[0] * x[1].powi(3)) * (x[1].powi(3) - 1.0),
|
||||||
|
2.0 * (1.5 - x[0] + x[0] * x[1]) * (x[0])
|
||||||
|
+ 2.0 * (2.25 - x[0] + x[0] * x[1].powi(2)) * (2.0 * x[0] * x[1])
|
||||||
|
+ 2.0 * (2.625 - x[0] + x[0] * x[1].powi(3)) * (3.0 * x[0] * x[1].powi(3)),
|
||||||
|
]
|
||||||
|
});
|
||||||
|
let obj = Fun::new(fun, prime);
|
||||||
|
let line_search = LineSearch::BackTrack {
|
||||||
|
max_iterations: 1000,
|
||||||
|
gamma: 0.9,
|
||||||
|
c: 0.01,
|
||||||
|
};
|
||||||
|
let res = steepest_descent(&obj, &vec![3.1, 0.5], 10000, 1e-12, &line_search, -1.0);
|
||||||
|
println!(
|
||||||
|
"Best val is {:?} for xs {:?}",
|
||||||
|
res.best_fun_val, res.best_xs
|
||||||
|
);
|
||||||
|
assert!(res.best_fun_val < 1e-7);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,10 +1,12 @@
|
|||||||
|
use std::fmt::Debug;
|
||||||
|
|
||||||
/// Trait defining the data structure that must be implemented for the independent variables used
|
/// Trait defining the data structure that must be implemented for the independent variables used
|
||||||
/// in the objective function. The generic type denotes the type of the prime of that variable
|
/// in the objective function. The generic type denotes the type of the prime of that variable
|
||||||
/// NOTE: This trait also defines some functions that are required to operate on the prime data
|
/// NOTE: This trait also defines some functions that are required to operate on the prime data
|
||||||
/// type. It should be noted that we are unable to just require T to implement Mul<f64> or Add<f64>
|
/// type. It should be noted that we are unable to just require T to implement Mul<f64> or Add<f64>
|
||||||
/// Bbecause then we wouldn't be able to implement XVar for plain Vec types which seems
|
/// Bbecause then we wouldn't be able to implement XVar for plain Vec types which seems
|
||||||
/// inconvenient
|
/// inconvenient
|
||||||
pub trait XVar<T>: Clone {
|
pub trait XVar<T>: Clone + Debug {
|
||||||
/// Update the current Xvariable based on the prime
|
/// Update the current Xvariable based on the prime
|
||||||
fn update(&self, alpha: f64, prime: &T) -> Self;
|
fn update(&self, alpha: f64, prime: &T) -> Self;
|
||||||
/// Multiply the prime by a float
|
/// Multiply the prime by a float
|
||||||
@ -38,7 +40,7 @@ impl XVar<f64> for f64 {
|
|||||||
impl XVar<Vec<f64>> for Vec<f64> {
|
impl XVar<Vec<f64>> for Vec<f64> {
|
||||||
fn update(&self, alpha: f64, prime: &Vec<f64>) -> Self {
|
fn update(&self, alpha: f64, prime: &Vec<f64>) -> Self {
|
||||||
self.iter()
|
self.iter()
|
||||||
.zip(prime)
|
.zip(prime.iter())
|
||||||
.map(|(x, xprime)| x + alpha * xprime)
|
.map(|(x, xprime)| x + alpha * xprime)
|
||||||
.collect()
|
.collect()
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user