Update traits to operate on single generic types and not slices of generic types. This should more flexibility for the user when defining objective functions
This commit is contained in:
parent
f9bc5adb71
commit
164f5a72c4
@ -1,5 +1,5 @@
|
||||
use crate::{
|
||||
minimize::{Direction, ExitCondition, OptimizationResult},
|
||||
minimize::{ExitCondition, OptimizationResult},
|
||||
objective_function::ObjectiveFun,
|
||||
traits::XVar,
|
||||
};
|
||||
@ -8,15 +8,14 @@ use super::line_search::LineSearch;
|
||||
|
||||
pub fn steepest_descent<T: XVar<E> + Clone, E>(
|
||||
fun: &dyn ObjectiveFun<T, E>,
|
||||
x0: &[T],
|
||||
x0: &T,
|
||||
max_iters: usize,
|
||||
tolerance: f64,
|
||||
line_search: &LineSearch,
|
||||
direction: f64,
|
||||
) -> OptimizationResult<T> {
|
||||
// Make a mutable copy of x0 to work with
|
||||
let mut xs = Vec::new();
|
||||
xs.extend_from_slice(x0);
|
||||
let mut xs = x0.clone();
|
||||
|
||||
// Perform the iteration
|
||||
let mut f_iminus1 = f64::INFINITY;
|
||||
@ -24,9 +23,8 @@ pub fn steepest_descent<T: XVar<E> + Clone, E>(
|
||||
let mut i = 0;
|
||||
for _ in 0..max_iters {
|
||||
let primes = fun.prime(&xs);
|
||||
xs.iter_mut().zip(primes.iter()).for_each(|(x, prime)| {
|
||||
*x = x.update(direction * line_search.get_learning_rate(), prime)
|
||||
});
|
||||
let learning_rate = line_search.get_learning_rate(fun, &xs);
|
||||
xs = xs.update(direction * learning_rate, &primes);
|
||||
f = fun.eval(&xs);
|
||||
|
||||
if (f - f_iminus1).abs() < tolerance {
|
||||
@ -58,14 +56,14 @@ mod test {
|
||||
|
||||
#[test]
|
||||
pub fn simple_steepest_descent_test() {
|
||||
let fun = Box::new(|xs: &[f64]| xs.iter().fold(0.0, |acc, x| acc + x.powi(2)));
|
||||
let prime = Box::new(|xs: &[f64]| xs.iter().copied().collect::<Vec<f64>>());
|
||||
let fun = Box::new(|xs: &Vec<f64>| xs.iter().fold(0.0, |acc, x| acc + x.powi(2)));
|
||||
let prime = Box::new(|xs: &Vec<f64>| xs.iter().map(|x| 2.0 * x).collect());
|
||||
|
||||
let obj = Fun::new(fun, prime);
|
||||
let line_search = LineSearch::ConstAlpha {
|
||||
learning_rate: 0.25,
|
||||
};
|
||||
let res = steepest_descent(&obj, &[20.0], 1000, 1e-12, &line_search, -1.0);
|
||||
let res = steepest_descent(&obj, &vec![20.0], 1000, 1e-12, &line_search, -1.0);
|
||||
|
||||
if let ExitCondition::MaxIter = res.exit_con {
|
||||
panic!("Failed to converge to minima");
|
||||
|
@ -21,7 +21,7 @@ impl Direction {
|
||||
}
|
||||
/// Struct holding the results for a minimization call
|
||||
pub struct OptimizationResult<T> {
|
||||
pub best_xs: Vec<T>,
|
||||
pub best_xs: T,
|
||||
pub best_fun_val: f64,
|
||||
pub exit_con: ExitCondition,
|
||||
pub iters: usize,
|
||||
|
@ -3,9 +3,9 @@ use crate::traits::XVar;
|
||||
/// Trait that should be implemented for objects that will be minimzed
|
||||
pub trait ObjectiveFun<T: XVar<E> + Clone, E> {
|
||||
/// Return the objective function value at a specified coordinate
|
||||
fn eval(&self, xs: &[T]) -> f64;
|
||||
fn eval(&self, xs: &T) -> f64;
|
||||
/// Return the gradients of the objective function value for specified coordinates
|
||||
fn prime(&self, xs: &[T]) -> Vec<E>;
|
||||
fn prime(&self, xs: &T) -> E;
|
||||
}
|
||||
|
||||
/// Enum allowing for selection of style of numerical differentiation
|
||||
@ -23,12 +23,12 @@ pub struct FunWithNumericalDiff {
|
||||
style: DiffStyle,
|
||||
}
|
||||
|
||||
impl ObjectiveFun<f64, f64> for FunWithNumericalDiff {
|
||||
fn eval(&self, xs: &[f64]) -> f64 {
|
||||
impl ObjectiveFun<Vec<f64>, Vec<f64>> for FunWithNumericalDiff {
|
||||
fn eval(&self, xs: &Vec<f64>) -> f64 {
|
||||
(self.function)(xs)
|
||||
}
|
||||
|
||||
fn prime(&self, xs: &[f64]) -> Vec<f64> {
|
||||
fn prime(&self, xs: &Vec<f64>) -> Vec<f64> {
|
||||
let mut xs_local = Vec::new();
|
||||
xs_local.extend_from_slice(xs);
|
||||
let f: Box<dyn FnMut((usize, &f64)) -> f64> = match self.style {
|
||||
@ -60,25 +60,25 @@ impl ObjectiveFun<f64, f64> for FunWithNumericalDiff {
|
||||
/// Struct that wraps two lambda with one providing the objective function evaluation and the other
|
||||
/// providing the gradient value
|
||||
pub struct Fun<T: XVar<E>, E> {
|
||||
function: Box<dyn Fn(&[T]) -> f64>,
|
||||
prime: Box<dyn Fn(&[T]) -> Vec<E>>,
|
||||
function: Box<dyn Fn(&T) -> f64>,
|
||||
prime: Box<dyn Fn(&T) -> E>,
|
||||
}
|
||||
|
||||
// Simple type to remove the generics
|
||||
pub type F64Fun = Fun<f64, f64>;
|
||||
|
||||
impl<T: XVar<E>, E> ObjectiveFun<T, E> for Fun<T, E> {
|
||||
fn eval(&self, xs: &[T]) -> f64 {
|
||||
fn eval(&self, xs: &T) -> f64 {
|
||||
(self.function)(xs)
|
||||
}
|
||||
|
||||
fn prime(&self, xs: &[T]) -> Vec<E> {
|
||||
fn prime(&self, xs: &T) -> E {
|
||||
(self.prime)(xs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: XVar<E>, E> Fun<T, E> {
|
||||
pub fn new(function: Box<dyn Fn(&[T]) -> f64>, prime: Box<dyn Fn(&[T]) -> Vec<E>>) -> Self {
|
||||
pub fn new(function: Box<dyn Fn(&T) -> f64>, prime: Box<dyn Fn(&T) -> E>) -> Self {
|
||||
Fun { function, prime }
|
||||
}
|
||||
}
|
||||
|
@ -1,5 +1,9 @@
|
||||
pub trait XVar<E>: Clone {
|
||||
fn update(&self, alpha: f64, prime: &E) -> Self;
|
||||
/// Trait defining the data structure that must be implemented for the independent variables used
|
||||
/// in the objective function. The generic type denotes the type of the prime of that variable
|
||||
///
|
||||
pub trait XVar<T>: Clone {
|
||||
/// Update the current Xvariable based on the prime
|
||||
fn update(&self, alpha: f64, prime: &T) -> Self;
|
||||
}
|
||||
|
||||
/// Implementation of XVar for an f64 type
|
||||
@ -8,3 +12,13 @@ impl XVar<f64> for f64 {
|
||||
self + alpha * prime
|
||||
}
|
||||
}
|
||||
|
||||
/// Implementation of XVar for a Vec<f64> type
|
||||
impl XVar<Vec<f64>> for Vec<f64> {
|
||||
fn update(&self, alpha: f64, prime: &Vec<f64>) -> Self {
|
||||
self.iter()
|
||||
.zip(prime)
|
||||
.map(|(x, xprime)| x + alpha * xprime)
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user