|
|
|
module subroutines
|
|
|
|
use parameters
|
|
|
|
use functions
|
|
|
|
use box
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer :: allostat, deallostat
|
|
|
|
|
|
|
|
public
|
|
|
|
contains
|
|
|
|
|
|
|
|
!This subroutine is just used to break the code and exit on an error
|
|
|
|
subroutine read_error_check(para, loc)
|
|
|
|
|
|
|
|
integer, intent(in) :: para
|
|
|
|
character(len=100), intent(in) :: loc
|
|
|
|
|
|
|
|
if (para > 0) then
|
|
|
|
print *, "Read error in ", trim(loc), " because of ", para
|
|
|
|
stop "Exit with error"
|
|
|
|
end if
|
|
|
|
|
|
|
|
end subroutine
|
|
|
|
|
|
|
|
subroutine matrix_inverse(a, n, a_inv)
|
|
|
|
|
|
|
|
integer :: i, j, k, piv_loc
|
|
|
|
integer, intent(in) :: n
|
|
|
|
real(kind = dp) :: coeff, sum_l, sum_u
|
|
|
|
real(kind = dp), dimension(n) :: b, x, y, b_piv
|
|
|
|
real(kind = dp), dimension(n, n) :: l, u, p
|
|
|
|
real(kind = dp), dimension(n, n), intent(in) :: a
|
|
|
|
real(kind = dp), dimension(n, n), intent(out) :: a_inv
|
|
|
|
real(kind = dp), allocatable :: v(:), u_temp(:), l_temp(:), p_temp(:)
|
|
|
|
|
|
|
|
l(:, :) = identity_mat(n)
|
|
|
|
u(:, :) = a(:, :)
|
|
|
|
p(:, :) = identity_mat(n)
|
|
|
|
!LU decomposition with partial pivoting
|
|
|
|
do j = 1, n-1
|
|
|
|
|
|
|
|
allocate(v(n-j+1), stat = allostat)
|
|
|
|
if(allostat /=0 ) then
|
|
|
|
print *, 'Fail to allocate v in matrix_inverse'
|
|
|
|
stop
|
|
|
|
end if
|
|
|
|
|
|
|
|
v(:) = u(j:n, j)
|
|
|
|
if(maxval(abs(v)) < lim_zero) then
|
|
|
|
print *, 'Fail to inverse matrix', a
|
|
|
|
stop
|
|
|
|
end if
|
|
|
|
|
|
|
|
piv_loc = maxloc(abs(v), 1)
|
|
|
|
deallocate(v, stat = deallostat)
|
|
|
|
|
|
|
|
if(deallostat /=0 ) then
|
|
|
|
print *, 'Fail to deallocate v in matrix_inverse'
|
|
|
|
stop
|
|
|
|
end if
|
|
|
|
!partial pivoting
|
|
|
|
if(piv_loc /= 1) then
|
|
|
|
|
|
|
|
allocate( u_temp(n-j+1), p_temp(n), stat = allostat)
|
|
|
|
if(allostat /=0 ) then
|
|
|
|
print *, 'Fail to allocate p_temp and/or u_temp in matrix_inverse'
|
|
|
|
stop
|
|
|
|
end if
|
|
|
|
|
|
|
|
u_temp(:) = u(j, j:n)
|
|
|
|
u(j, j:n) = u(piv_loc+j-1, j:n)
|
|
|
|
u(piv_loc+j-1, j:n) = u_temp(:)
|
|
|
|
p_temp(:) = p(j, :)
|
|
|
|
p(j, :) = p(piv_loc+j-1, :)
|
|
|
|
p(piv_loc+j-1, :) = p_temp(:)
|
|
|
|
|
|
|
|
deallocate( u_temp, p_temp, stat = deallostat)
|
|
|
|
if(deallostat /=0 ) then
|
|
|
|
print *, 'Fail to deallocate p_temp and/or u_temp in matrix_inverse'
|
|
|
|
stop
|
|
|
|
end if
|
|
|
|
|
|
|
|
if(j > 1) then
|
|
|
|
|
|
|
|
allocate( l_temp(j-1), stat = allostat)
|
|
|
|
if(allostat /= 0) then
|
|
|
|
print *, 'Fail to allocate l_temp in matrix_inverse'
|
|
|
|
stop
|
|
|
|
end if
|
|
|
|
|
|
|
|
l_temp(:) = l(j, 1:j-1)
|
|
|
|
l(j, 1:j-1) = l(piv_loc+j-1, 1:j-1)
|
|
|
|
l(piv_loc+j-1, 1:j-1) = l_temp(:)
|
|
|
|
|
|
|
|
deallocate( l_temp, stat = deallostat)
|
|
|
|
if(deallostat /=0 ) then
|
|
|
|
print *, 'Fail to deallocate l_temp in matrix_inverse'
|
|
|
|
stop
|
|
|
|
end if
|
|
|
|
end if
|
|
|
|
end if
|
|
|
|
|
|
|
|
!LU decomposition
|
|
|
|
do i = j+1, n
|
|
|
|
coeff = u(i, j)/u(j, j)
|
|
|
|
l(i, j) = coeff
|
|
|
|
u(i, j:n) = u(i, j:n)-coeff*u(j, j:n)
|
|
|
|
end do
|
|
|
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
a_inv(:, :) = 0.0_dp
|
|
|
|
do j = 1, n
|
|
|
|
b(:) = 0.0_dp
|
|
|
|
b(j) = 1.0_dp
|
|
|
|
b_piv(:) = matmul(p, b)
|
|
|
|
!Now we have LUx = b_piv
|
|
|
|
!the first step is to solve y from Ly = b_piv
|
|
|
|
!forward substitution
|
|
|
|
do i = 1, n
|
|
|
|
if(i == 1) then
|
|
|
|
y(i) = b_piv(i)/l(i, i)
|
|
|
|
else
|
|
|
|
sum_l = 0
|
|
|
|
do k = 1, i-1
|
|
|
|
sum_l = sum_l+l(i, k)*y(k)
|
|
|
|
end do
|
|
|
|
y(i) = (b_piv(i)-sum_l)/l(i, i)
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
!then we solve x from ux = y
|
|
|
|
!backward subsitution
|
|
|
|
do i = n, 1, -1
|
|
|
|
if(i == n) then
|
|
|
|
x(i) = y(i)/u(i, i)
|
|
|
|
else
|
|
|
|
sum_u = 0
|
|
|
|
do k = i+1, n
|
|
|
|
sum_u = sum_u+u(i, k)*x(k)
|
|
|
|
end do
|
|
|
|
x(i) = (y(i)-sum_u)/u(i, i)
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
!put x into j column of a_inv
|
|
|
|
a_inv(:, j) = x(:)
|
|
|
|
end do
|
|
|
|
return
|
|
|
|
end subroutine matrix_inverse
|
|
|
|
|
|
|
|
subroutine parse_ori_vec(ori_string, ori_vec)
|
|
|
|
!This subroutine parses a string to vector in the format [ijk]
|
|
|
|
character(len=8), intent(in) :: ori_string
|
|
|
|
real(kind=dp), dimension(3), intent(out) :: ori_vec
|
|
|
|
|
|
|
|
integer :: i, ori_pos, stat
|
|
|
|
|
|
|
|
ori_pos=2
|
|
|
|
do i = 1,3
|
|
|
|
if (ori_string(ori_pos:ori_pos) == '-') then
|
|
|
|
ori_pos = ori_pos + 1
|
|
|
|
read(ori_string(ori_pos:ori_pos), *, iostat=stat) ori_vec(i)
|
|
|
|
if (stat>0) STOP "Error reading orientation value"
|
|
|
|
ori_vec(i) = -ori_vec(i)
|
|
|
|
ori_pos = ori_pos + 1
|
|
|
|
else
|
|
|
|
read(ori_string(ori_pos:ori_pos), *, iostat=stat) ori_vec(i)
|
|
|
|
if(stat>0) STOP "Error reading orientation value"
|
|
|
|
ori_pos=ori_pos + 1
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
|
|
|
|
return
|
|
|
|
end subroutine parse_ori_vec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
subroutine apply_periodic(r)
|
|
|
|
!This function checks if an atom is outside the box and wraps it back in. This is generally used when some
|
|
|
|
!kind of displacement is applied but the simulation cell is desired to be maintained as the same size.
|
|
|
|
|
|
|
|
real(kind=dp), dimension(3), intent(inout) :: r
|
|
|
|
|
|
|
|
integer :: j
|
|
|
|
real(kind=dp) ::box_len
|
|
|
|
do j = 1, 3
|
|
|
|
if(box_bc(j:j) == 'p') then
|
|
|
|
box_len = box_bd(2*j) - box_bd(2*j-1)
|
|
|
|
if (r(j) > box_bd(2*j)) then
|
|
|
|
r(j) = r(j) - box_len
|
|
|
|
else if (r(j) < box_bd(2*j-1)) then
|
|
|
|
r(j) = r(j) + box_len
|
|
|
|
end if
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
end subroutine
|
|
|
|
|
|
|
|
subroutine build_cell_list(numinlist, r_list, rc_off, cell_num, num_in_cell, cell_list, which_cell)
|
|
|
|
!This subroutine builds a cell list based on rc_off
|
|
|
|
|
|
|
|
!----------------------------------------Input/output variables-------------------------------------------
|
|
|
|
|
|
|
|
integer, intent(in) :: numinlist !The number of points within r_list
|
|
|
|
|
|
|
|
real(kind=dp), dimension(3,numinlist), intent(in) :: r_list !List of points to be used for the construction of
|
|
|
|
!the cell list.
|
|
|
|
|
|
|
|
real(kind=dp), intent(in) :: rc_off ! Cutoff radius which dictates the size of the cells
|
|
|
|
|
|
|
|
integer, dimension(3), intent(inout) :: cell_num !Number of cells in each dimension.
|
|
|
|
|
|
|
|
integer, allocatable, intent(inout) :: num_in_cell(:,:,:) !Number of points within each cell
|
|
|
|
|
|
|
|
integer, allocatable, intent(inout) :: cell_list(:,:,:,:) !Index of points from r_list within each cell.
|
|
|
|
|
|
|
|
integer, dimension(3,numinlist), intent(out) :: which_cell !The cell index for each point in r_list
|
|
|
|
|
|
|
|
!----------------------------------------Begin Subroutine -------------------------------------------
|
|
|
|
|
|
|
|
integer :: i, j, cell_lim, c(3)
|
|
|
|
real(kind=dp) :: box_len(3)
|
|
|
|
integer, allocatable :: resize_cell_list(:,:,:,:)
|
|
|
|
|
|
|
|
!First calculate the number of cells that we need in each dimension
|
|
|
|
do i = 1,3
|
|
|
|
box_len(i) = box_bd(2*i) - box_bd(2*i-1)
|
|
|
|
cell_num(i) = int(box_len(i)/(rc_off/2))+1
|
|
|
|
end do
|
|
|
|
|
|
|
|
!Initialize/allocate variables
|
|
|
|
cell_lim = 10
|
|
|
|
allocate(num_in_cell(cell_num(1),cell_num(2),cell_num(3)), cell_list(cell_lim, cell_num(1), cell_num(2), cell_num(3)))
|
|
|
|
|
|
|
|
!Now place points within cell
|
|
|
|
do i = 1, numinlist
|
|
|
|
!c is the position of the cell that the point belongs to
|
|
|
|
do j = 1, 3
|
|
|
|
c(j) = int((r_list(j,i)-box_bd(2*j-1))/(rc_off/2)) + 1
|
|
|
|
end do
|
|
|
|
|
|
|
|
!Place the index in the correct position, growing if necessary
|
|
|
|
num_in_cell(c(1),c(2),c(3)) = num_in_cell(c(1),c(2),c(3)) + 1
|
|
|
|
if (num_in_cell(c(1),c(2),c(3)) > cell_lim) then
|
|
|
|
allocate(resize_cell_list(cell_lim+10,cell_num(1),cell_num(2),cell_num(3)))
|
|
|
|
resize_cell_list(1:cell_lim, :, :, :) = cell_list
|
|
|
|
resize_cell_list(cell_lim+1:, :, :, :) = 0
|
|
|
|
call move_alloc(resize_cell_list, cell_list)
|
|
|
|
end if
|
|
|
|
|
|
|
|
cell_list(num_in_cell(c(1),c(2),c(3)),c(1),c(2),c(3)) = i
|
|
|
|
which_cell(:,i) = c
|
|
|
|
end do
|
|
|
|
|
|
|
|
return
|
|
|
|
end subroutine build_cell_list
|
|
|
|
|
|
|
|
|
|
|
|
subroutine check_right_ortho(ori, isortho, isrighthanded)
|
|
|
|
!This subroutine checks whether provided orientations in the form:
|
|
|
|
! | x1 x2 x3 |
|
|
|
|
! | y1 y2 y3 |
|
|
|
|
! | z1 z2 z3 |
|
|
|
|
!are right handed
|
|
|
|
|
|
|
|
real(kind=dp), dimension(3,3), intent(in) :: ori
|
|
|
|
logical, intent(out) :: isortho, isrighthanded
|
|
|
|
|
|
|
|
integer :: i, j
|
|
|
|
real(kind=dp) :: v(3), v_k(3)
|
|
|
|
!Initialize variables
|
|
|
|
isortho = .true.
|
|
|
|
isrighthanded=.true.
|
|
|
|
|
|
|
|
do i = 1, 3
|
|
|
|
do j = i+1, 3
|
|
|
|
|
|
|
|
if(abs(dot_product(ori(i,:), ori(j,:))) > lim_zero) then
|
|
|
|
isortho = .false.
|
|
|
|
end if
|
|
|
|
|
|
|
|
!Check if they are righthanded
|
|
|
|
if (j == i+1) then
|
|
|
|
v(:) = cross_product(ori(i,:), ori(j,:))
|
|
|
|
v_k(:) = v(:) - ori(mod(j, 3)+1,:)
|
|
|
|
else if ((i==1).and.(j==3)) then
|
|
|
|
v(:) = cross_product(ori(j,:),ori(i,:))
|
|
|
|
v_k(:) = v(:) - ori(i+1, :)
|
|
|
|
end if
|
|
|
|
|
|
|
|
if(norm2(v_k) > 10.0_dp**(-8.0_dp)) then
|
|
|
|
isrighthanded=.false.
|
|
|
|
end if
|
|
|
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
end do
|
|
|
|
|
|
|
|
return
|
|
|
|
end subroutine check_right_ortho
|
|
|
|
|
|
|
|
end module subroutines
|